Supplementary materials

Table	of	Contents

Experimental Section	2
Reagents	2
Gas discharge and Mass Spectrometry	2
Figure S1. Schematic view of the experimental apparatus	3
Table	4
Table S1. Summary of benzene derivatives and the related ions	4
Reaction processes details	5
Equation S1-S6. Reaction processes for the ionization and fragment of benzene by atmospheric corona discharge	5
Scheme	6
Scheme 1. Hypothesized reaction diagram of disubstituted benzene derivatives under gas discharge	6
Scheme 2. Reaction scheme of fast isomerization vs relatively slow ion-molecule reaction illustrated by 4-chlorostyrene	6
Computational data	7
Density functional theory (DFT) calculations	7
Figures S2-S5. Structures and energetics of ArN_2^+ , Ar^+ and the possible protonated cinnoline isomers, the ring-closing isomers	7
Spectra	8
Figure S6. Mass spectra of PhCl, PhBr, PhF and the Trend picture of correlation of the C-X bond dissociation energy and abundance of ions relative to the respective molecular ion (M ⁺)	8

1,2	Figure S7. Mass spectra of 2-chlorostyrene, 4-chlolostyrene, 2-bromostyrene and -dichlorobenzene.	9
	Figure S8. MS/MS scan to obtain the aryldiazonium cations from the corresponding	
	protonated molecular precursor ions of: (a) 2-chlorophenylacetylene; (b) 2-	10
	chlorobenzonitrile	
	Figure S9. Mass spectra of phenylacetylene and 2-chlorobenzonitrile	11
	Figure S10. Mass spectra of 2-bromotoluene and 2-chloroaniline	11
	Table S2-S11. Cartesian coordinates for structures in Figure S2-S5, respectively	12

Experimental Section Reagents

All chemicals of benzene derivatives of analytical grade were purchased from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China), and used directly without further purification. High pure nitrogen gas (99.999%) provided by Xi'an Tenglong Chemical Co., Ltd. (Xi'an, China) was used as the discharge gas and carrier gas.

Gas discharge and Mass Spectrometry

Mass spectrometry experiments were performed with a commercial linear ion trap mass spectrometer (LTQ XL; Thermal Fisher, San Jose, CA) equipped with an Ion Max APCI source. The sample was introduced into the corona discharge zone by a headspace approach as depicted in Fig S1. Specifically, the pure liquid sample in a wash bottle was flushed by N₂ gas, and the sample vapor was carried by the nitrogen gas to the APCI ion source inlet. The flow rate of the carrier gas was optimized to maximize the total ion current and the abundance of precursor ions, and was set at 0.7 L/min for all the experiment. Then the benzene derivatives were carried by N_2 gas to the ion source plasma region, where they subjected to ionization, fragmentation and chemical reactions. Note that N₂ was used as the carrier gas to keep consistency with the N₂ atmosphere in the APCI source, which was created by the sheath gas and auxiliary gas both being N_2 . The ionized sample formed in the corona discharge region may react with the background N_2 gas, and the ion-molecule reaction product was on-line monitored by mass spectrometry. In positive ion mode, mass spectra were acquired with the Xcalibur (version 4.0 QF2) software and were collected under automatic gain control. The mass spectrometry operating parameters were as follows: source temperature, 200°C; sheath gas, 14 arbitrary units; auxiliary gas, 12 arbitrary units; corona current, 4 uA; capillary voltage, 40 V; capillary temperature, 200°C; tube lens, 90 V. All spectra were collected under automatic gain mode, where per spectrum was set 3 microscans at 100 ms maximum ion injection time.

Benzene		laamar	m/z	m/z	ArN ₂ +
derivatives	ĸ	isomer	Ar+	ArN_2^+	abundance ^a
	H (1)				18
	F (2)				3
R	Cl (3)		77	105	22
	Br (4)				74
	l (5)				220
		o- (6)			
R	0i	p- (7)	91	119	0
	Br	o- (8)			
		0- (9)	103 131		
R	G	Cl <i>p</i> - (10) 103	103	3 131	0
	Br	o- (11)			
	F	o- (12)	(11) (12)		23
		o- (13)	101	100	288
R	CI	p- (14)	101	129	160
	Br	o- (15)		m/z ArN ₂ + 105 119 131 129 130 120 3 139/141	367
N	Cl (16)		(00		325
R	Br (17)		102	130	409
CI NH2	(18)		92	120	0
CI	(19)		111/113	139/141	221

Table S1 Summary of benzene derivatives and the related ions

^a Relative product abundance refers to the abundance ratio of the $[ArN_2]^+$ and the corresponding molecular radical cation M^+ . Taking the parent benzene for example, it corresponds to the abundance ratio of m/z, 105/78. Note

that for benzene derivatives 6-11 and 18, the corresponding $\text{ArN}_2{}^{*}$ cations were not observed on mass spectrometry

Reaction process details

Under atmospheric pressure of N₂, the highly energetic electrons initially impact and ionize N₂ molecules due to their high concentration, giving rise to N₂⁺ (eq S1).the benzene molecule was ionized by the reagent N₂⁺ ion leading to benzene radical cation (C₆H₆⁺(v))(eq S2); Due to the excess internal energy after the charge transfer between N₂ (15.58 eV) and benzene (9.24 eV) is higher than the C-H bond dissociation energy (De) of 4.89 eV, causing C-H bond breakage for C₆H₅⁺ formation (Ph⁺)(eq S3), which subsequently bind to a N₂ giving rise to PhN₂⁺ (eqs S4-5).

$$e^* + N_2 \rightarrow N_2^+ + 2e \qquad \qquad S1$$

$$C_6H_6 + N_2^+ \rightarrow C_6H_6^+(v) + N_2$$
 S2

$$C_6H_6^+(v) \to C_6H_5^+(v) + H$$
 S3

$$C_6H_5^+(v) + N_2 \rightarrow C_6H_5^+ + N_2$$
 S4

$$C_6H_5^+ + N_2 \rightarrow C_6H_5N_2^+$$
 S5

According to the basic quasi-equilibrium theory (QET S6), there would be an exponential increase for the fragmentation rate constant when the C-H bond is replaced with a weaker C-X bond. Equation S6 is basically a simplified form of Rice–Ramsperger–Kassel (RRK) theory, which for energized molecular ions at relatively low pressure, can be simplified to equation S6. It is often used in the field of mass as a rule of thumb to qualitatively describe dissociation or rearrangement of energized molecular ions spectrometry. At high pressure or with less excess energy, the energized molecular ions may approach toward equilibrium, which would make equation S6 less accurate. That is why an effective number of oscillators are used, rather than the actual vibrational degrees of freedom. The simplified QET is often applied in the field of mass spectrometry to qualitatively explain experiment observation. On the other hand, in practice, the number of vibration freedom has to be replaced by an effective number, in order to better fit the experimental result. The effective number is usually in the range of $1/4 \sim 2/3$ of the actual vibrational degrees of freedom. For tolyl cation (C₇H₇⁺), the effective number of 15 corresponds to an effective factor ca. 2/5 (15/32).

$$k = v \times e^{-(s-1)^{E^{\ddagger}}/E_{int}}$$
 S6

Scheme

Density functional theory (DFT) calculations

The structures involved in this study were optimized by B3LYP (Becke, 3-parameter, Lee–Yang–Parr) in combination with the double-zeta polarized basis set 6-31G*, and the nature of the optimized structures as a minimum or transition state was verified by frequency calculations. The energetics were calculated at the same theory level based on the optimized geometries. All calculations were performed with the Gaussian09 package.

Fig. S4. Structures and energetics (in eV) of Ar^+ and the ring-closing isomers generated from 2-Chlorophenylacetylene (Cl-Ph-C₂H) (13)

Fig. S5. Structures and energetics (in eV) of ArN_2^+ and the possible ring-closing iosomer (**21**) generated from 2-chlorophenylacetylene (**13**) as shown in **Scheme S1**.

Spectra

Fig. S6. Atmospheric pressure corona discharge ionization mass spectra of: (a) PhCl; (b) PhBr. (C)PhF. (d) correlation of the C-X bond dissociation energy and abundance of ions relative to the respective molecular ion (M^+) : $I_r = I_{105}/I_M$ and $I_t = (I_{77} + I_{95} + I_{105})/I_M^+$, where I_{77} , I_{105} , and I_{95} refer to the relative abundance of $C_6H_5^+$, $C_6H_5N_2^+$ and $C_6H_5OH_2^+$, respectively, on the mass spectra.

Fig. S7. Atmospheric pressure corona discharge ionization mass spectra of (a) 2-chlorostyrene; (b) 4-chlolostyrene. (c) 2-bromostyrene; (d) 1,2-dichlorobenzene.

Fig. S8. MS/MS scan to obtain the aryldiazonium cations from the corresponding protonated molecular precursor ions of: (a) 2-chlorophenylacetylene; (b) 2-chlorobenzonitrile. The mass spectra were obtained from QE Orbitrap mass spectrometer by applying 70% collision energy in the HCD cell with background gas of N_2 . The peaks (marked by red boxes) at m/z 129 and 130 correspond to the arylium ions from 2-chlorophenylacetylene and 2-chlorobenzonitrile, respectively.

Figure S9. Positive ion mode full-scan APCI mass spectra of (a) 2-chlorophenylacetylene. (b) 4-chlorophenylacetylene. (c) 2- fluorophenylacetylene. (d) 2-chlorobenzonitrile.

Figure S10. Positive ion mode full-scan APCI mass spectra of (a) 2-bromotoluene; (b) 2-chloroaniline.

Table S2. Cartesian coordinate and frequencies of structure S1 as in Figure S2E = -418.261151437 Hartree

С	1.17599900	1.44162400	-0.13273200
С	-0.06370100	0.78712700	-0.10481900
С	0.01380000	-0.63282600	0.00344700
С	1.22116100	-1.36259700	0.13981100
С	2.40529200	-0.65215900	0.14833800
С	2.37760500	0.74729800	0.00127100
Н	1.18272000	2.52178100	-0.23522600
Н	1.19870800	-2.44415400	0.21746100
Н	3.34830000	-1.17662600	0.25305600
Н	3.31150800	1.30030600	-0.00577700
Ν	-1.12654600	-1.37842600	-0.11111500
Ν	-2.02940600	-2.02415700	-0.23836100
Н	-3.32290500	1.90641900	0.30611300
С	-1.30582300	1.55452200	-0.19924600
С	-2.46099800	1.25592600	0.41212900
Н	-1.22624200	2.47755000	-0.76832900
Н	-2.58043100	0.39932100	1.06983900

Frequencies	88.0523	137.9376	159.0603
Frequencies	202.1565	232.2290	376.4302
Frequencies	392.9753	441.4029	512.0737
Frequencies	525.7135	566.0940	606.9398

Frequencies	643.9780	717.9630	750.2007
Frequencies	781.1020	829.0046	901.0413
Frequencies	987.5694	1002.4138	1015.9199
Frequencies	1034.8593	1043.2728	1058.4481
Frequencies	1128.2059	1182.9877	1207.6127
Frequencies	1237.2618	1291.7419	1334.9673
Frequencies	1380.3378	1448.7072	1475.6619
Frequencies	1512.9444	1585.1341	1629.8443
Frequencies	1690.8800	2327.2495	3172.4308
Frequencies	3185.2822	3213.0426	3222.5120
Frequencies	3226.4506	3237.7070	3264.3267

Table S3. Cartesian coordinate and frequencies of structure 20 as in Figure S2

E= -418.324598089 Hartree

С	1.26191100	1.42791600	-0.00000400
С	0.01595700	0.75899600	-0.00000200
С	0.00208900	-0.68849700	-0.00001100
С	1.22313200	-1.42031900	0.00000700
С	2.40979500	-0.73180200	0.00000600
С	2.42742200	0.69262000	-0.00000400
Н	1.28634300	2.51262400	-0.00000100
Н	1.17751900	-2.50342300	0.00001100
Н	3.35043100	-1.27201100	0.00001000
Н	3.38385900	1.20552100	-0.00000400

Ν	-1.14223400	-1.39460000	-0.00000700
Ν	-2.25441800	-0.70873300	0.00000100
Н	-3.38760700	1.03633000	0.00001100
C	-1.23466800	1.40809700	0.00000400
C	-2.37855100	0.64386100	0.00000400
Н	-1.30683800	2.49019600	0.00001000
Н	-3.08966200	-1.29113100	-0.00000200

Frequencies	177.1213	180.2202	380.3574
Frequencies	398.7835	463.2714	488.9408
Frequencies	517.2333	532.4596	637.3022
Frequencies	640.7718	764.4178	769.1817
Frequencies	783.9573	832.5028	833.0857
Frequencies	877.6602	913.0504	974.7162
Frequencies	988.9562	1008.3650	1034.1993
Frequencies	1039.3998	1080.6295	1165.8303
Frequencies	1178.7350	1196.8659	1266.2437
Frequencies	1290.5151	1318.0646	1367.7193
Frequencies	1430.3554	1454.0172	1487.5109
Frequencies	1543.4416	1552.3613	1610.9832
Frequencies	1633.7182	1659.3203	3210.7800
Frequencies	3219.9916	3226.8655	3229.5389
Frequencies	3237.4611	3255.7748	3549.3934

Table S4. Cartesian coordinate and frequencies of structure 25 as in Figure S3E = -308.683036404 Hartree

С	0.39350100	1.23949000	-0.00001400
С	-0.62644100	0.19830100	-0.00000400
С	0.15562200	-0.87955500	-0.00000700
С	1.38003100	-1.39943200	-0.00000200
С	2.27666400	-0.28841000	0.00001500
С	1.76330900	1.01045800	-0.00000100
Н	-0.02499300	2.24491300	-0.00001300
Н	1.68620400	-2.43869300	-0.00001200
Н	3.33981000	-0.50977700	0.00001900
Н	2.43958400	1.85808400	0.00000100
Н	-4.04922600	-0.22375500	0.00002900
С	-2.06055200	0.46269800	0.00000700
С	-2.99882400	-0.49232600	-0.00000200
Н	-2.32597500	1.51476400	0.00003400
Н	-2.76526600	-1.55287300	-0.00001300

Frequencies	86.7790	151.4512	173.3940
Frequencies	336.2583	370.9892	426.8935
Frequencies	467.4883	520.0011	538.2271
Frequencies	675.9432	679.0519	759.0462
Frequencies	787.9791	886.3685	904.9486
Frequencies	973.3062	1000.5900	1002.9075

Frequencies	1003.1733	1025.8362	1075.6155
Frequencies	1130.7531	1188.6643	1239.6028
Frequencies	1278.3244	1328.0868	1376.8297
Frequencies	1458.1217	1496.0400	1506.1945
Frequencies	1678.9288	1808.3129	3173.4566
Frequencies	3175.2722	3212.2620	3212.5581
Frequencies	3233.7571	3246.9385	3271.8612

 Table S5. Cartesian coordinate and frequencies of structure 26 as in Figure S3

E=-308.738972908

С	-0.78691300	1.44438700	-0.00001300
С	0.45208800	0.74646400	0.00002400
С	0.54924800	-0.68429000	0.00000500
С	-0.56231600	-1.49202700	0.00002400
С	-1.78720300	-0.79155200	0.00001300
С	-1.90167200	0.62993400	-0.00001900
Н	-0.85775900	2.52678200	-0.00002100
Н	-0.53324900	-2.57579100	0.00003600
Н	-2.70955500	-1.36669400	-0.00000500
Н	-2.89530200	1.06446500	-0.00005300
С	1.82972300	0.88242100	0.00002500
С	2.09087500	-0.62859900	-0.00003900
Н	2.59546700	-1.01366300	-0.89192500
Н	2.50185300	1.73822700	0.00010900

Frequencies	83.6485	217.5156	374.2978
Frequencies	430.2562	451.2882	546.1875
Frequencies	644.5902	696.6290	776.1056
Frequencies	786.0377	882.2927	898.5848
Frequencies	905.2131	909.2248	1002.2733
Frequencies	1008.2498	1042.8707	1051.1992
Frequencies	1110.9945	1145.8422	1155.8509
Frequencies	1198.0558	1236.1913	1258.3584
Frequencies	1287.6650	1379.5020	1443.3907
Frequencies	1462.4326	1483.2646	1538.8975
Frequencies	1645.8736	1652.9041	3076.8544
Frequencies	3127.8174	3204.7851	3213.1126
Frequencies	3224.2445	3233.8749	3235.9609

Table S6. Cartesian coordinate and frequencies of structure S2 as in Figure S4

E= -307.411735473 Hartree

C	0.11385800	1.14778500	-0.00001100
С	-0.69512600	-0.06713600	0.00000800
С	0.26376000	-1.00377900	-0.00000300
С	1.56130600	-1.28661400	-0.00000900
С	2.23710700	-0.02741100	0.00001400
С	1.50163300	1.15990300	0.00000000

Н	-0.48452800	2.05645200	-0.00001800
Н	2.05562700	-2.25126400	-0.00002100
Н	3.32310000	-0.05467300	0.00001800
Н	2.01873300	2.11323100	-0.00000300
Н	-4.37652100	-0.12750000	-0.00000300
С	-2.09866900	-0.10099800	0.00000500
С	-3.30660500	-0.11112500	0.00000100

Frequencies	110.3973	141.0211	324.3043
Frequencies	345.7184	363.2723	434.9836
Frequencies	470.8894	520.1684	614.8278
Frequencies	664.2307	709.9317	728.9103
Frequencies	735.1134	777.9715	883.0858
Frequencies	907.9001	972.7641	1001.3087
Frequencies	1022.1337	1128.6130	1184.2995
Frequencies	1243.8583	1277.2313	1355.5725
Frequencies	1494.4567	1505.3123	1806.5859
Frequencies	2245.0230	3188.0517	3209.1750
Frequencies	3232.5115	3243.1207	3455.0918

Table S7. Cartesian coordinate and frequencies of structure S3 as in Figure S4

E= -307.391443455	Hartree		
С	-0.65003200	-1.47283700	-0.00001300
С	0.55028800	-0.78986300	-0.00026000

С	0.62950900	0.65899300	-0.00021600
С	-0.50503100	1.48769900	-0.00013200
С	-1.70946100	0.79169100	0.00004400
С	-1.77895500	-0.63701100	0.00022400
Н	-0.73169800	-2.55434600	-0.00013000
Н	-0.45875400	2.57137200	-0.00014200
Н	-2.64465400	1.34275600	0.00015200
Н	-2.76703000	-1.08889100	0.00015200
Н	2.85108000	1.31162700	0.00056800
С	2.04188200	-0.88308400	0.00003400
С	2.04697500	0.58065700	0.00021900

Frequencies	175.5758	291.4921	374.2799
Frequencies	442.3494	535.2836	556.5833
Frequencies	584.4560	765.7382	791.0467
Frequencies	824.2127	877.5669	913.8889
Frequencies	961.0874	992.4041	999.0133
Frequencies	1044.2860	1049.1419	1120.2373
Frequencies	1153.1747	1191.3511	1217.9918
Frequencies	1246.0893	1322.3153	1426.9236
Frequencies	1466.7115	1503.3419	1565.0406
Frequencies	1623.8618	3210.4475	3221.6380
Frequencies	3233.1166	3234.3046	3235.1469

Table S8. Cartesian coordinate and frequencies of structure S4 as in Figure S5

E= -417.001411838 Hartree

С	-0.95198600	-1.52943700	0.00003000
С	0.19447300	-0.72094700	0.00000200
С	-0.04245100	0.68778300	-0.00000300
С	-1.32509300	1.27657100	-0.00000600
С	-2.41790000	0.42948300	0.00001700
С	-2.22623500	-0.96339300	0.00003600
Н	-0.82535200	-2.60578000	0.00004700
Н	-1.43349700	2.35538100	-0.00001600
Н	-3.41925800	0.84467000	0.00002400
Н	-3.09178200	-1.61811700	0.00005500
Ν	1.04824800	1.51275700	-0.00001400
Ν	1.94852800	2.17326600	-0.00008200
Н	3.61454300	-2.11687500	0.00001800
С	1.50527600	-1.25081900	0.00000400
С	2.62690300	-1.70614700	0.00001000

Frequencies	110.7953	114.4787	166.8912
Frequencies	192.4548	357.4884	391.6776
Frequencies	414.6391	457.6657	533.5275
Frequencies	557.2795	571.2965	607.9312
Frequencies	707.8708	713.7249	721.9210
Frequencies	728.1055	779.8819	821.2772

Frequencies	903.9459	989.8824	1034.3472
Frequencies	1052.7685	1116.8584	1183.7865
Frequencies	1207.4656	1234.5103	1302.9861
Frequencies	1364.3814	1459.6600	1506.8327
Frequencies	1584.9342	1624.1681	2222.9162
Frequencies	2338.0647	3217.5970	3227.3611
Frequencies	3236.0336	3239.3820	3456.9085

 Table S8. Cartesian coordinate and frequencies of structure 21 as in Figure S5

E= -416	.976217453	Hartree
---------	------------	---------

С	1.18734200	1.46046600	0.00005900
С	-0.05052600	0.77959400	0.00003500
C	-0.01857200	-0.70721700	-0.00002500
С	1.20369900	-1.39602200	-0.00004800
С	2.37968700	-0.67163700	-0.00001700
С	2.36743900	0.74253400	0.00003600
Н	1.18716800	2.54380300	0.00010000
Н	1.19371800	-2.48025300	-0.00009000
Н	3.32937100	-1.19542600	-0.00003300
Н	3.31034200	1.27920100	0.00006100
Ν	-1.23295000	-1.30277900	-0.00007700
Ν	-2.30082900	-0.72261400	-0.00005500
Н	-3.55124100	1.03270600	0.00005500
С	-1.33186000	1.26079900	0.00006200

С

Frequencies	171.2435	203.8565	368.4679
Frequencies	398.7782	457.0994	458.7186
Frequencies	511.9656	562.6976	568.3632
Frequencies	584.4039	656.1012	704.2106
Frequencies	707.7491	785.7744	786.3561
Frequencies	793.9982	845.8295	882.5851
Frequencies	996.1858	1029.7038	1035.6773
Frequencies	1097.8114	1143.2606	1191.2236
Frequencies	1219.5419	1256.0810	1329.5705
Frequencies	1340.2555	1436.1843	1480.6539
Frequencies	1552.4758	1620.1548	1647.7200
Frequencies	1777.2297	3219.7959	3227.6788
Frequencies	3236.2065	3240.8152	3313.4813

Table S9. Cartesian coordinate and frequencies of tolyl cation in Figure 5

E= -270.603002583 Hartree

C	-1.26655200	-1.26434200	0.00043700
С	0.03903200	-0.99812500	-0.00161900
С	1.01480000	-0.10039800	0.00068800
С	0.24076500	1.12618100	-0.00013900
С	-1.14952600	1.17756600	-0.00018100
С	-1.91209400	0.00781500	0.00005400

Н	-1.77888600	-2.21878100	0.00192000
Н	0.85247900	2.02695700	0.00012500
Н	-1.64287500	2.14315800	0.00028600
Н	-2.99841900	0.00832400	0.00066700
С	2.51696200	-0.17720400	0.00030700
Н	2.93412700	0.82978100	0.00864600
Н	2.86687600	-0.71681600	0.88405700
Н	2.86637100	-0.70158400	-0.89298300

Frequencies	45.0387	168.9284	284.1908
Frequencies	378.3347	394.5149	451.3067
Frequencies	532.4227	594.9254	673.9633
Frequencies	755.7913	762.5237	887.1375
Frequencies	908.5723	976.9216	978.2079
Frequencies	1014.9528	1054.4505	1105.9883
Frequencies	1131.4055	1191.0025	1230.1302
Frequencies	1286.9831	1362.2549	1415.1125
Frequencies	1481.8064	1487.0956	1496.9165
Frequencies	1506.3009	1814.2466	3073.2864
Frequencies	3149.9727	3176.0696	3178.6459
Frequencies	3209.2759	3234.3692	3249.9359

Table S10. Cartesian coordinate and frequencies of benzyl cation in Figure 5

E= -270.672868600 Hartree

С	-1.12126700	1.23564400	0.00013200
С	0.25419100	1.24636900	-0.00044500
С	0.98274400	0.00006800	-0.00025300
С	0.25434700	-1.24633400	-0.00032900
С	-1.12114200	-1.23568700	-0.00009500
С	-1.80195200	-0.00006300	0.00031700
Н	-1.68392200	2.16245400	0.00040600
Н	0.80765400	-2.18058400	-0.00023700
Н	-1.68378400	-2.16251900	-0.00007500
Н	-2.88865400	-0.00016300	0.00079100
С	2.35286100	0.00005900	0.00038900
Н	2.92145300	0.92664900	0.00033400
Н	2.92110200	-0.92677600	0.00120000
Н	0.80746500	2.18059600	-0.00072000

Frequencies	166.1988	341.9459	360.2014
Frequencies	419.1449	534.5587	610.0378
Frequencies	629.2352	644.6944	800.7248
Frequencies	824.4590	851.2235	987.3037
Frequencies	1002.1199	1002.6597	1016.6352
Frequencies	1026.3744	1052.9073	1105.3651
Frequencies	1138.5665	1205.5362	1215.5097
Frequencies	1356.3967	1390.8512	1430.5612
Frequencies	1484.9764	1506.4458	1582.6172

Frequencies	1604.9927	1673.5565	3164.9305
Frequencies	3208.5317	3213.4582	3215.3176
Frequencies	3232.7475	3235.3785	3266.5332

Table S11. Cartesian coordinate and frequencies corresponding to the transition state TS2 as in
 Figure 5

E=-270.561135164; Imaginary frequency: -632.7696 cm⁻¹

С	-0.65047800	-1.47776200	-0.03740000
С	0.50259300	-0.77400900	0.16603200
С	0.85423700	0.49988800	0.10747300
С	-0.14985000	1.46299100	0.01787400
С	-1.43668600	0.89957000	-0.02253000
С	-1.67065800	-0.49328000	-0.03811700
Н	-0.81448400	-2.54536900	-0.07084700
Н	0.02502800	2.52995700	-0.04796000
Н	-2.29853800	1.55689500	-0.07116900
Н	-2.69453700	-0.85823900	-0.03288100
С	2.24874000	-0.04433200	-0.09600500
Н	2.69385100	0.08702400	-1.08451600
Н	2.92126100	0.01703400	0.76292300
Н	1.98003200	-1.22569700	-0.03951100

Frequencies	-632.7696	120.2278	343.5120
Frequencies	400.5666	462.8201	538.5044
Frequencies	602.6885	622.9806 S28	688.6694

Frequencies	728.7879	846.5501	870.9897
Frequencies	937.4300	948.8032	990.6710
Frequencies	1006.0275	1011.4046	1128.7836
Frequencies	1167.3516	1204.2568	1235.8668
Frequencies	1288.7134	1298.6265	1395.6718
Frequencies	1444.9813	1472.7274	1495.1763
Frequencies	1547.1183	1813.6086	2240.1402
Frequencies	3084.0350	3198.5178	3199.1371
Frequencies	3224.1336	3247.9843	3278.7634