Potassium and Sodium lons Complexes with a Partial Peptide of the Selectivity Filter in K+ Channels Studied by Cold Ion Trap Infrared Spectroscopy: Effect of Hydration

Takumi Negoro^{1,2,†}, Keisuke Hirata^{1,2,3,†}, James M. Lisy^{3,4}, Shun-ichi Ishiuchi^{1,2,5*} and Masaaki Fujii^{1,2,3*}

([†] equally contributed)

¹Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology. 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.

²School of Life Science and Technology, Tokyo Institute of Technology. 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.

³Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.

⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

⁵Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Supporting information

Figure S1 Structures of (a) GYG and (b) Ac-tyrosine-NHMe. The replacement of N-(-NH₂) and C-terminus (-COOH) with hydrogen atoms gives the dipeptide Actyrosine-NHMe.

Figure S2 Five water binding sites of K⁺GYG for a) O/O conformer and b) its tyrosine-OH rotamer. The conformers obtained from the initial structures are named as 1) metal ion, 2) carbonyl, 3) NH, 4) aromatic, and 5) tyrosine OH.

Figure S3 IRPD spectra of a) $K^+GYG(H_2O)$ and b) $K^+GYG(D_2O)$. The bands observed in 3540-3600 and 3690-3740 cm⁻¹ in $K^+GYG(H_2O)$ are ascribed to vibrational modes of H_2O .

Figure S4 UVPD spectrum of $K^+GYG(H_2O)$. The IR-UV spectra of conformer A, B, C, and C' were measured by probing the bands at 35445, 35380, 35993, and 35567 cm⁻¹, respectively.

-0-1) metal ion -2) carbonyl --3) NH -4) aromatic --5) tyrosine OH sites

Figure S5 a) Calculated structures, IR intensities, and b) relative Gibbs free energies of O/O-type conformers of $K^+GYG(H_2O)$. More stable rotamer is shown.

Figure S6 a) Calculated structures, IR intensities, and b) relative Gibbs free energies of O/O'-type conformers of $K^+GYG(H_2O)$. More stable rotamer is shown.

Figure S7 a) Calculated structures, IR intensities, and b) relative Gibbs free energies of O/O/R-type conformers of $K^+GYG(H_2O)$. More stable rotamer is shown.

-O-1) metal ion -△-2) carbonyl -□-3) NH -◇-4) aromatic -▽-5) tyrosine OH sites

Figure S8 a) Calculated structures, IR intensities, and b) relative Gibbs free energies of O/O-type conformers $Na^+GYG(H_2O)$. More stable rotamer is shown.

---1) metal ion ---2) carbonyl -□-3) NH ---4) aromatic ---5) tyrosine OH sites

Figure S9 a) Calculated structures, IR intensities, and b) relative Gibbs free energies of O/O'-type conformers of Na⁺GYG(H₂O). More stable rotamer is shown.

-O-1) metal ion $-\Delta$ -2) carbonyl-D-3) NH--4) aromatic--7-5) tyrosine OH sites Figure S10 a) Calculated structures, IR intensities, and b) relative Gibbs free energies of O/O/R-type conformers of Na⁺GYG(H₂O). More stable rotamer is shown. Note that the initial structure of the metal ion-hydrated cluster (#1) converged to the carbonyl-hydrated structure (#2) after the geometry optimization.

Figure S11 Experimental and calculated IR spectra of the observed conformers of $K^+GYG(H_2O)$ and their relative Gibbs free energies as a function of temperature.

Figure S12 Experimental and calculated IR spectra of the observed conformers of $Na^+GYG(H_2O)$ and their relative Gibbs free energies as a function of temperature.

	obs.					calc.					lsomer assignment
	OH str.	NH str. (NH _a)	NH str. (NH _b)	CO str. (sym)	CO str. (anti)	OH s	tr. NH str. (NH _a)	NH str. (NH _b)	CO str. (sym)	CO str. (anti)	
Na⁺GYG(H₂O)	3651	3436	3436	1686	N.D.	364	0 3426	3455	1664	1632	0/0
	3651	3411	3482	1686	N.D.	364	2 3415	3465	1665	1638	0/0'
	3641	3459	3468	N.D.	N.D.	363	9 3466	3459	1678	1651	0/0/R
K⁺GYG(H₂O)	3650	3439	3455	1682	N.D.	363	9 3429	3455	1665	1639	0/0
	3650	3407	3475	1682	N.D.	364	1 3411	3465	1669	1645	0/0'
	3640	3468	3482	1703	N.D.	363	9 3466	3459	1684	1660	0/0/R
	obs.			calc.			lsomer assignment]			
	Free OH str	. F	-bonded OH str.	Free OH str.	H-bo OH	nded str.					
Na⁺GYG(H₂O)			N.D.	3707 N.		D.	0/0				
	3707-374	45	N.D.	3720 N.		D.	0/0'				

N.D.

3521

3505

N.D.

0/0/R

0/0

0/0'

0/0/R

N.D.

3539-3603

3539-3603

N.D.

3726

3726

3710

K⁺GYG(H₂O)

3721

3713

3710

3706

Table S1 Observed and calculated vibrational frequencies of $M^+GYG(H_2O)$ (M = Na, K) and their assignments.

Table S2 Experimentally obtained conformer abundance of $M^+GYG(H_2O)$ (M = Na, K).

	K+	Na ⁺			
	Abundance	Abundance			
O/O	57	65			
0/0'	34	22			
0/0/R	9	13			