Supporting Information

The structure of aqueous solutions of hexafluoro-iso-propanol studied by neutron diffraction with hydrogen/deuterium isotope substitution and empirical potential structure refinement modeling

K. YOSHIDA<sup>a</sup>, T. YAMAGUCHI<sup>a\*</sup>, D. T. BOWRON<sup>b</sup>, J. L. FINNEY<sup>c</sup>

<sup>a</sup> Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan, Fukuoka 814-0180, Japan.

<sup>b</sup>ISIS Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK

<sup>c</sup>Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK



Figure S1. The pair correlation functions of the non-polar interaction between HFIP and water molecules for the HFIP-water mixtures at  $x_{\text{HFIP}} = 0.1$  (solid lines), 0.2 (dashed lines), and 0.4 (dot and dashed lines).



Figure S2. The pair correlation functions of HFIP-HFIP interaction for the HFIP-water mixtures at  $x_{\text{HFIP}}=0.1$  (solid lines), 0.2 (dashed lines), and 0.4 (dot and dashed lines).



Figure S2. (Continured)

|                                |               |                         |                 | $x_{ m HFIP}$   |                |
|--------------------------------|---------------|-------------------------|-----------------|-----------------|----------------|
|                                | $r_{\rm min}$ | <i>r</i> <sub>max</sub> | 0.1             | 0.2             | 0.4            |
| O <sub>W</sub> –O <sub>W</sub> | 3.3           | 6.0                     | 15.0 ± 3.2      | $10.6 \pm 3.1$  | 5.4 ± 2.8      |
| O <sub>W</sub> -H <sub>W</sub> | 2.5           | 4.5                     | $14.5 \pm 3.6$  | $11.1 \pm 3.6$  | $6.5 \pm 3.3$  |
| O <sub>W</sub> -H              | 2.5           | 4.5                     | $0.65 \pm 0.75$ | $1.0 \pm 0.9$   | 1.6 ± 1.1      |
| $O-H_W$                        | 2.5           | 4.0                     | $7.3 \pm 2.0$   | 5.5 ± 2.4       | 3.4 ± 1.9      |
| 0-0                            | 3.3           | 7.0                     | $2.4 \pm 1.3$   | 3.6 ± 1.3       | 5.3 ± 1.5      |
| О-Н                            | 2.5           | 4.0                     | $0.19 \pm 0.40$ | $0.34 \pm 0.50$ | $0.57\pm0.70$  |
| $C-O_W$                        | 5.3           | 7.5                     | $23.5 \pm 3.0$  | $15.3 \pm 4.0$  | $7.4 \pm 2.9$  |
| $Cc-O_W$                       | 4.2           | 6.0                     | $15.0 \pm 2.2$  | 9.8 ± 3.9       | 4.8 ± 2.5      |
| $C_{C}$ - $H_{W}$              | 3.3           | 6.0                     | $35.2 \pm 4.4$  | $23.3 \pm 7.0$  | $12.3 \pm 5.6$ |
| C <sub>C</sub> -O              | 4.3           | 5.0                     | $1.2 \pm 0.9$   | $1.8 \pm 1.1$   | 2.9 ± 1.5      |
| С <sub>С</sub> -Н              | 3.3           | 6.0                     | $1.2 \pm 0.9$   | $1.8 \pm 1.1$   | 2.9 ± 1.5      |
| C-C                            | 5.8           | 8.5                     | 8.6 ± 2.1       | $12.3 \pm 2.5$  | $16.4 \pm 2.8$ |
| F-C                            | 4.8           | 8.0                     | 7.7 ± 1.9       | $11.8 \pm 2.5$  | $15.7 \pm 2.6$ |
| F-F                            | 3.8           | 5.6                     | $5.2 \pm 2.3$   | 9.0 ± 3.1       | $12.4 \pm 3.2$ |

Table S1. The coordination number of the second neighbor coordination shell obtained from integration of pcfs between the lower and upper limits  $r_{min}$  and  $r_{max}$ , respectively, HFIP-HFIP interactions at  $x_{HFIP} = 0.1, 0.2, \text{ and } 0.4$ .