Understanding the Role of Hydrophobic Patches in Protein Disaggregation

Avishek Kumar,[†] Nitin Kumar Singh,[†] Deepshikha Ghosh,[‡] and Mithun

 $\mathsf{Radhakrishna}^{*,\dagger}$

†Discipline of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India

‡Discipline of Biological Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India

E-mail: mithunr@iitgn.ac.in

Fig 1: Effect of surface hydrophobicity (λ) on disaggregation of 42mer HP proteins at $T^* = 0.42$ on different surface patterns when $\Delta = 8$ and $\epsilon_{H-H'} = -1$ (concentrated regime). The behavior on a fully (homogeneous) hydrophobic surface is also graphed for reference a) Average number of inter-protein contacts $(n_{H-H'})$ b) Average number of protein-surface contacts (n_{H-s}) c) Average number of intra-protein contacts $(n_{H-H'})$ as a function of λ . The dotted line in (c) represents the intraprotein contacts of the protein in dilute regime in bulk.

Fig 2: Effect of surface hydrophobicity (λ) on disaggregation of 42mer HP proteins at $T^* = 0.42$ on different surface patterns when $\Delta = 4$ and $\epsilon_{H-H'} = -1$ (concentrated regime). The behavior on a fully (homogeneous) hydrophobic surface is also graphed for reference a) Average number of inter-protein contacts $(n_{H-H'})$ b) Average number of protein-surface contacts (n_{H-s}) c) Average number of intra-protein contacts $(n_{H-H'})$ as a function of λ . The dotted line in (c) represents the intraprotein contacts of the protein in dilute regime in bulk.

Fig 3: Effect of surface hydrophobicity (λ) on disaggregation of 42mer HP proteins at $T^* = 0.42$ on different surface patterns when $\Delta = 2$ and $\epsilon_{H-H'} = -1$ (concentrated regime). The behavior on a fully (homogeneous) hydrophobic surface is also graphed for reference a) Average number of inter-protein contacts $(n_{H-H'})$ b) Average number of protein-surface contacts (n_{H-s}) c) Average number of intra-protein contacts $(n_{H-H'})$ as a function of λ . The dotted line in (c) represents the intraprotein contacts of the protein in dilute regime in bulk.

Fig 4: Folded state (native) of the two model HP proteins a) 48 mer HP protein with a native state energy of $-34\epsilon_{H-H}$ with 10 hydrophobic groups exposed in an asymmetric manner b) 64 mer HP protein with a native state energy of $-56\epsilon_{H-H}$ with 6 hydrophobic groups exposed in a 3×2 manner. Hydrophobic and Polar groups are represented by red and blue beads respectively

Fig 5: Effect of surface hydrophobicity (λ) on disaggregation of 64mer HP proteins at $T^* = 0.38$ on different surface patterns when $\Delta = 8$ and $\epsilon_{H-H'} = -1$ (concentrated regime). The behavior on a fully (homogeneous) hydrophobic surface is also graphed for reference a) Average number of inter-protein contacts $(n_{H-H'})$ b) Average number of protein-surface contacts (n_{H-s}) c) Average number of intra-protein contacts $(n_{H-H'})$ as a function of λ .