Supplementary Materials for

CO₂ Activation and Dissociation on In₂O₃ (110) Supported PdnPt(4-n)

(n = 0-4) Catalysts: A Density Functional Theory Study

Xiaowen Wang¹, Jiaying Pan^{1,*}, Haiqiao Wei^{1,*}, Wenjia Li², Jun Zhao²

Zhen Hu¹

State Key Laboratory of Engines, Tianjin University, China Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, China

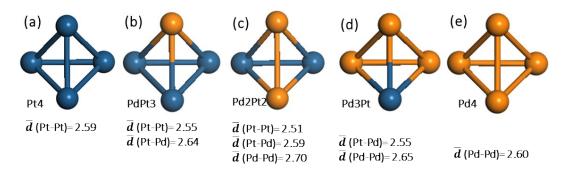


Fig. S1. Optimized structures of PtnPd(4-n) (n = 0 - 4) clusters (bond lengths in angstroms (Å) and angles in degrees (°)). Blue and orange spheres represent Pt and Pd atoms, respectively.

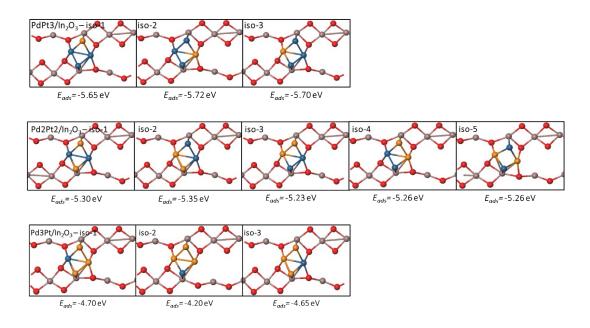


Fig. S2. Minor energy stable structures and binding energy E_{bind} of Pt3Pd/In₂O₃, Pt2Pd2/In₂O₃, and PtPd3/In₂O₃ catalysts.

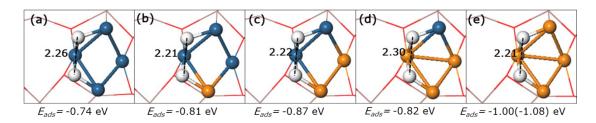


Fig. S3. The optimized structures along with adsorption energies for H₂ adsorption on PtnPd(4-n)/In₂O₃ catalysts. The data of the Pd4/In₂O₃ case in brackets are the results reported by Ye *et. al.*.¹

References

(1) Jingyun Ye A, B.; Chang-jun, L.; Donghai, M.; Qingfeng, G. Methanol synthesis from CO₂ hydrogenation over a Pd4/In₂O₃ model catalyst: A combined DFT and kinetic study. *J. Catal.* **2014**, 317, 44-53.