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Computational Methods 

1. Definition of the coordinates of the grid 

CH4+ possesses 9 internal coordinates. They are all involved in the configurational distortions 

leading to the C2v and D2d minima on the ground state of the cation and in the non adiabatic 

coupling seams between the three lowest excited states. In order to capture the main features 

of the early time non adiabatic quantum dynamics, we define a grid with two coordinates, q1 

and q2, that are linear combinations of 15 Cartesian displacements  : 

  (1) 

 (2) 

with  = 1, 2,3 for the three Cartesian displacements  on each atom.  

Table S1: Normalized Cartesian displacements defining the two coordinates q1 and q2 
 Dxc Dyc Dzc DxH1 DyH1 DzH1 DxH2 DyH2 DzH2 

q1 0.00547 -0.00554 0.09994 0.35209 0.31586 -0.49586 -0.38280 -0.28470 -0.49588 

q2 0.00550 -0.00557 0.00080 -0.17315 -0.20960 0.41467 0.14224 0.24096 0.41464 

 DxH3 DyH3 DzH3 DxH4 DyH4 DzH4    

q1 -0.05665 0.12396 -0.09771 0.02220 -0.08911 -0.10147    

q2 -0.17478 0.24251 -0.41752 0.14011 -0.20744 -0.42131    

 

The coordinate q1 points to the C2v minimum of the GS cation while the coordinate q2 points 

to the D2d minimum. In addition, the Cartesian displacements  include distortions that allow 

spanning the NAC’s seams between the three lowest states. On the grid, the point closest to a 

C2v minimum on the ground state is at q1 = -1.4 and q2 = 0. It has a root mean square deviation 

(RMSD) of 0.0418 Bohr compared to the C2v geometry. Strictly speaking, if there was no 

distortion and all the grid points were of C2v symmetry, a second C2v minimum should be 

present on the grid. However, maintaining the C2v geometry for all grid points leads to zero 

non adiabatic coupling by symmetry. The other minimum on the grid corresponds to more 
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distorted C2v geometry with a RMSD of 0.1384 Bohr with respect to C2v, that is actually closer 

to a Cs symmetry. It is located at q1=1.08 and q2=1.26 and 0.1583 eV above the C2v minimum 

on the grid. The D2d minimum on the grid is localized at q1= 0 and q2 =-1.12 at a relative energy 

of 0.165 eV compared to the minimum C2v on the grid. The RMSD from a D2d geometry is 

0.0321 Bohr. On the GS, the gradients from the Td point on the grid in the directions of these 

three minima are nearly identical. The D1 PES on the grid exhibits three minima, localized 

close to the GS/D1 seams. There is a single well localized around Td for D2 PES. Isocontours 

of the 3 PES are plotted in Figure S1.  

 

 
Figure S1: Isocontours of the PES of the cation computed at the SA-3-(9,8) /6-

31G++(2df,2pd). A: Ground state. Isocontour spacing: 0.01 eV B. First excited state D1. 

Isocontour spacing: 0.009 eV. C. Second excited state D2. Isocontour spacing: 0.015 eV. 

 

The size of the grid is defined to avoid reflections of the wave packet on the edges  for the time 

range investigated . The grid extends from -5.8 to + 5.8 by step of 0.08 for q1 and from -7.98 

to 4.83 with a step 0.07 for q2, which leads to 26864 grid points per electronic state. The FC 

region is defined by the ground vibrational state of the neutral at its equilibrium geometry. The 

D2d and C2v  minima are located on the edges of the FC region which is centered on the Td 

geometry and comprises 1886 grid  points. There is also C3v minimum on the GS PES whose 

geometry falls outside the grid but whose computed energy and geometry are in agreement 

with ref. 1. The decomposition of the two coordinates on the normal modes of the Td, C2v and 
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D2d geometries of the GS of the cation is given in Tables S2 to S4. The position of the center 

of mass is conserved for all the geometries sampled by the grid. The Cartesian coordinates of 

the equilibrium geometries of the Td neutral ground electronic state and of the C2v and D2d 

minima of the ground state of the cation are given in Tables S5 to S7. 

Table S2 : Decomposition of the two coordinates q1 and q2 in the normal modes of the Td of 

the GS neutral. 
 T2-b1 T2-b1 T2-b1 E1 E2 A1 T2-s1 T2-s1 T2-s1 
q1 -0.06209 0.12545 0.18221 0.17533 -0.51592 0.07245 -0.12389 -0.07338 -0.02498 
q2 -0.02390 -0.02341 0.00058 -0.05646 -0.99648 0.03965 0.01121 -0.01768 -0.02087 

 

Table S3 : Decomposition of the two coordinates q1 and q2 in the normal modes of the C2v 

minimum of the GS cation. 
 A2 A1-1 B2-1 B1-1 A1-2 B2-2 A1-3 A1-4 B1-2 
q1 0.38736 -0.15184 0.03143 -0.01828 -0.01556 -0.00512 -0.79214 0.09907 -0.02358 
q2 -0.34661 -0.13486 0.03163 -0.01839 -0.67273 -0.00051 0.64400 0.00654 -0.01224 

 

Table S4 : Decomposition of the two coordinates q1 and q2 in the normal modes of the D2d 

minimum of the GS cation. 
 E1-1 E1-2 B2-1 A1-1 B1-1 B2-2 A1-2 E2-1 E2-2 
q1 -0.02446 0.02775 0.68856 -0.45592 0.47398 0.13515 0.13121 -0.01927 0.01561 
q2 -0.02462 0.02773 0.02209 0.91015 0.06728 -0.06573 -0.11738 -0.01939 0.01571 

 

Table S5: Cartesian coordinates of the equilibrium Td geometry of the neutral ground state 

computed at the CASSCF (10,8) /6-31G++(2df,2pd) in the laboratory frame defined in Figure 

1A(in Bohr). The computed vertical IP is 13.61 eV. The Td geometry is 1.81 eV above the C2v 

minimum. 

 X Y Z 
C 0.0000 0.0000 0.0000 
H1 1.2046 1.2046 1.2046 
H2 -1.2046 -1.2046 1.2046 
H3 1.2046 -1.2046 -1.2046 
H4 -1.2046 1.2046 -1.2046 

 

Table S6: Cartesian coordinates of the equilibrium C2v geometry on the GS of the cation (global 

minimum) computed at the SA-3-CASSCF (9,8) /6-31G++(2df,2pd) in the laboratory frame 

defined in Figure 1A(in Bohr).  

 X Y Z 
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C       0.0000    0.0000   -0.1494 
H1     0.7033    0.7033    1.9477 
H2    -0.7033   -0.7033    1.9477 
H3     1.3166   -1.3166   -1.0578 
H4    -1.3166    1.3166   -1.0578 

 

Table S7: Cartesian coordinates of the equilibrium D2d geometry on the GS of the cation 

computed at the SA-3-CASSCF (9,8) /6-31G++(2df,2pd) in the laboratory frame defined in 

Figure 1A(in Bohr). This local minimum is 0.2837 eV above the C2v global minimum 

 X Y Z 
C     0.0000    0.0000   0.0000 
H1  -1.4310   1.4310   0.7149 
H2   1.4310  -1.4310   0.7149 
H3   1.4310   1.4310  -0.7149 
H4  -1.4310  -1.4310  -0.7149 

 

 

Vibronic Hamiltonian on the grid 

We use atomic units throughout. In the  coordinates, the kinetic energy operator takes 

the form : 

   (3) 

with mi being the mass of C and H respectively.   

The Hamiltonian includes the non adiabatic coupling between the three lowest electronic states 

of the cation. The basis functions are the product of the adiabatic electronic wave function of 

state i, , computed at the grid point g which corresponds to a value of q1 and q2 and a 

product of orthonormal window functions  centered at each grid point. In 

short notation we denote the full wave function at each grid point . After integration on the 

electronic coordinates, the matrix elements of the Hamiltonian between two basis wave 

functions  and  take the form: 
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    (4) 

where i and j stand for the electronic state index and g and g’ for the indices of grid points.  

 are the matrix elements of the kinetic energy operator defined in Eq.(3), they are 

diagonal in the electronic state index but off diagonal in the grid point index.  are the 

matrix elements of the potential energy, diagonal in both the electronic and grid indexes. 

The non adiabatic coupling (NAC) matrix elements are computed at each grid point, using the 

quantum chemistry program MOLPRO.2  is the NAC vector expressed in the coordinates 

, see Figure S4 for a heatmap of the two components on the grid. It is diagonal in the 

grid point index, g, but off diagonal in the electronic state index. We neglect in Eq. (4) the 

second derivative matrix elements with respect to the nuclear coordinate of the electronic wave 

function. pjgg’ is the matrix of the momentum operator on state j with  and 

.  

The time-dependent Schrödinger equation  

     (5) 

is integrated numerically for a vector of amplitudes, c, of L=Ng x 3 =80592 complex 

components. The action of the non local kinetic energy is computed using a finite difference 

scheme with  error.3, 4 We use a  for the momentum operator to retain a good 

numerical precision in the integration of the terms due to the NAC coupling. 

 

The first-order derivatives are computed at order 6 as 5. 

 ,   u, v = q1, q2 (6) 

Hig , j ′g t( ) = − 12Tig , j ′g δ ij +Vig , jg 'δ ijδ g ′g +
1
i
τ ig , jgδ gg '
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i dc
dt
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O h4( ) O h6( )

dcu,v
du

= 1
60du

−cu−3,v + 9cu−2,v − 45cu−1,v + 45cu+1,v − 9cu+2,v + cu+3,v( )
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where u and v represents the q1 and q2 coordinates corresponding to a grid point g. The second 

order derivatives are given by5: 

 (7) 

 and the cross derivatives between the two internal coordinates v and u: 

(8) 

The amplitudes  are propagated using Eq. (5) using a time step of  0.01 a.u. of time and 

a 4th order Runge-Kutta scheme for the time integration which allows to keep the norm up to 

10-8 for the time range of 50 fs investigated. 

 

 

Initial density matrix of the ensemble. 

We draw an ensemble, a mixture of 8000 initial states, with random orientations, , of the 

electric field with respect to the molecular frame. For each orientation, , and each carrier 

frequency,  or , of the ionizing pulse, we define a vector, , of complex amplitudes, 

, on the grid points  for each electronic state i,  =1, 2, 3 : 

   (9) 

where m is the index for the initial conditions, , for a given value of the carrier frequency 

of the pulse and ig is the electronic state-grid index.  is the density of states 

computed at grid point g for an ionization for electronic state i. The kinetic energy of the 

photoelectron at each grid point g for a given electronic state, i, is given by

 for a given  carrier frequency, , of the XUV pulse.  

The are the photoionization matrix elements from the GS neutral to the three electronic 

states of the cation at each grid point integrated over the solid angle  : 

d2cu,v
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ê

hν9 hν11 cm

cig
m q1,q2( ) i

cig
m = cGS ,g

neut ρ g,ε( ) êm.digε
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    (10) 

The ’s are computed within the sudden ionization approximation for each grid point in the 

FC region as described in ref. 6.  is the Dyson orbital between the GS of the neutral 

and the electronic state i of the cation computed at grid point g at the CASSCF (10,8) and SA3- 

CASSCF (9,8) levels with the atomic basis set /6-31G++(2df,2pd) respectively. The 

photoelectron wave functions, , are orthogonalized plane waves with , for 

the wave vector k. The photoelectron continuum is discretized in 256 k values. For each k 

value, an ensemble of 512 values of solid angles are sampled uniformly on the unit sphere. 

The norms of the vectors , are the ionization yields normalized to the 

strength of the electrical field,  , of the neutral in the direction  for a carrier frequency 

, shown in Figure 2 of the main text for CH4+ and in Figure S2 for CD4+. Each vector  

defines a pure state and the corresponding L by L density matrix, , takes the form: 

     (11) 

The ensemble density matrix,  at time t = 0, is the sum of the matrices : 

   (12) 

where M is the number of orientations of the electric field. Both the density matrix, , 

Eq. (11), of a particular orientation, , of the electric field in the laboratory frame and  the 

ensemble density matrix, , Eq. (12), can be written as a  quadratic form. Each matrix 

 is a pure case of rank 1. For one can define a rectangular matrix A, of 

dimensions L x M, made of the M vectors cm, so that it takes the form  
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    (13) 

For the case studied here, we have that M, the number of random orientations of the electric 

field is much smaller than L the number of grid points in 2D multiplied by the number of 

electronic states. We expect that M << L will typically be the case when averaging over 

orientations in the case of a multistate quantum dynamics on a multidimensional grid. One can 

then apply a singular value decomposition (SVD) on the matrix A directly: 

     (14) 

where S is a L x M  matrix of the complex left eigenvectors of A,  the M x M diagonal matrix 

of its eigenvalues and the columns of M x M matrix V are the complex right eigenvectors. One 

can show that  has at most M non zero eigenvalues that are given by the squares of the 

M eigenvalues of the matrix A. The eigenvectors of the  that correspond to its non zero 

eigenvalues are the M left eigenvectors of the A matrix given by the matrix S in Eq. (14) above. 

The SVD decomposition of the L by M A therefore provides a computationally less demanding 

route than diagonalizing the Hermitian L x L  density matrix, since we have M  << L.  

In the case of a random orientation of the electric field in the laboratory frame, one can show 

analytically that there are only three non zero eigenvalues of the matrix A, which leads to a 

very large saving of computer time for computing the time evolution of the ensemble. 

From Eqs. (9) and (10), one can define a transition dipole vector at each grid point weighted 

by the amplitude of the neutral ground state,  : 

     (15) 

so that we can rewrite the amplitude of the initial state on the grid (Eq. (9)) as 

    (16) 

Using this notation, one matrix element ig,jg’ of L x L   in Eq. (12) takes the form  
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     (17) 

where the normalized vectors  have each 3 Cartesian components : 

. The matrix  is a 3x3 matrix which for random 

orientations of the vectors  is diagonal and is a multiple of the unit matrix by a constant that 

depends on the number of samplings, M. It can therefore be factorized in front of the row vector

 in Eq. (17). Since each column vector  has three Cartesian 

components, the expression of the full matrix  given in Eq. (12) and Eq. (13) becomes 

is a L x L matrix that is the product of the Lx3 matrix  and the 3xL matrix .  So in case of 

a random orientation of the electric field with respect to the molecular frame, the quadratic 

form of  in Eq. (13) takes a simpler form where the matrix A is replaced by the matrix 

 : 

  (18) 

 is therefore of rank 3 and its spectral representation takes the form : 

     (19) 
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where the eigenvectors  are complex and orthonormal. The eigenvectors of  that 

correspond to a non zero eigenvalue are given by the left eigenvectors of the SVD 

decomposition of the matrix  in Eq. (18) : 

     (20) 

Sd  is the L x 3 matrix of the left eigenvectors of , the three  eigenvectors of .  

is the 3 x 3  matrix of the eigenvalues and  is the 3x3 matrix of the right eigenvectors. The 

eigenvalues of  are given by the squares of the eigenvalues of . To compute the time 

evolution of the density matrix of the ensemble, it is therefore strictly equivalent to either 

propagate the M=8000  vectors or to propagate the three  vectors using the time 

dependent Schrödinger equation (Eq. (5)). This is because the time evolution of  is 

unitary and dictated by the Hamiltonian (Eq. (4)). Diagonalizing the  matrix by SVD and 

propagating its left eigenstates therefore provides a considerable saving of computer times and 

allows running quantum dynamics for an accurate sampling of the random initial orientations. 

We checked numerically that it was indeed the case. In general, even if the orientation of the 

orientations of the electric field in the laboratory frame are not random, diagonalizing the A 

matrix of Eq. (14) provides a saving of computer time  as long as M << L because  is 

rank deficient and can have at most M non zero eigenvalues.  

The three eigenvalues of  are not equal, which can be understood because the cartesian 

components of the photoionization matrix elements  are no equal and depend on the grid 

point g and on the electronic state i. For a given carrier frequency of the XUV ionizing pulse, 

the traces of  reported in Table S4 are almost identical for CH4+ and CD4+.  The eigenvalues 

of  and its traces are reported in Table S4, as well as the trace of  for the four 

computations. Each sr vector has amplitudes on the three electronic states. The three right 

eigenvectors are localized along the X, Y, and Z directions. 
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Table S8 : Trace of the matrix  and the three eigenvalues normalized to the trace for 

the four computations. 

 hn 9 hn 11 

 CH4+ CD4+ CH4+ CD4+ 

Trace 94.3975 94.5496 109.1024 108.6559 

w1 0.5442 0.5360 0.8380 0.8420 

w2 0.3253 0.3282 0.1150 0.1152 

w3 0.1343 0.1358 0.0469 0.0427 

 

  

ρens 0( )



 13 

Supplemental figures 

 

 

 
Figure S2 : Heatmaps of angularly resolved photoionization yields plotted separately for each 

electronic state (  with i = GS, D1 and D2) computed for CD4+ and two carrier 

frequencies of the ionization XUV attopulse (  = 13.95 eV and = 17.05 eV). The 

heatmaps are computed by drawing 8000  vectors with random orientations  of the electric 

field. Note how for the D2 state, the yield is very small for the 9th harmonic while it is 

comparable to the lowest states for the 11th one.  
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Figure S3 : Heatmaps of the population on each grid point,  on each electronic 

state i = GS (left), D1 (middle) and D2 (right), computed for CD4+ for the  (top row) and 

 (bottom row) pulses. 
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Figure S4. Heatmaps of the components of the NAC vector along the coordinates q1 and q2 on 

the grid as indicated.  
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Figure S5: Time evolution of the three electronic coherences, integrated over the full grid 

. The GS-D1 (i=GS, j=S1) is plotted in green, the GS-D2 (i=GS, j=S2) is 

plotted in blue and the D1-D2 coherence (i=S1, j=S2) is plotted in red. Panel A : Ionization by 

the  pulse, CH4+, B : Ionization by the  pulse, CD4+, C :Ionization by the  pulse, 

CH4+, D : Ionization by the  pulse, CD4+. 
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Figure S6: Populations in a  region of 25 grid points localized around the D2d (red), C2v (green) 

and Cs (bronze) minima on the GS computed for CH4+ and CD4+ with the  pulse (panel A) 

and the  pulse (panel B). The RMSD deviation of the 25 point region from the D2d 

geometry is 0.0504 1 Bohr (similar to that computed for the minimum grid point shown in 

figure 4 C and D), for the C2v region, the RMSD with respect to the C2v geometry is 0.0571, 

and for the Cs 25 point region, the RMSD with respect to a C2v geometry is 0.1438 Bohr. One 

clearly see that the onset of the rise of the population in the D2d region precedes that in the Cs 

region, with the onset of the rise in the C2v occurring later. 

hν9

hν11
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Figure S7: The contributions of the electronic coherences to the square moduli of the 

autocorrelations for the four dynamical simulations as indicated, panel A : CH4+,  , B: 

CD4+, , C: CH4+,  and D: CD4+, . The ratio of the autocorrelation functions 

|C(t)D|2/|C(t)H|2 is plotted in black. Note how the difference in the decay of the GS-D2 term and 

to a smaller extent that of the GS-D1 term coincides with the onset of a large isotope effect in 

the  dynamics. 

, i =  GS, D1, D2. 
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