Supporting Information for

Linear Group 13 E=E triple bonds

Zhong-hua Cui,*^{1,3} Yu-qian Liu,¹ Runfeng Huang,² Meng-hui Wang,¹ Bing Yan,¹ Lili

Zhao*2

^aInstitute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China

E-mail: <u>zcui@jlu.edu.cn</u>

^bInstitute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China

E-mail: <u>ias_llzhao@njtech.edu.cn</u>

^cBeijing National Laboratory for Molecular Sciences

I. Computational details

The PBE0¹/def2-SVP level was used to minimize the initial structures of $E_2M_5^+$ (E=Group 13; M=Li, Na, K) with singlet and triplet and quintuplet potential energy surface (PES) analysis. For the low-lying energy isomers, we employed a large def2-QZVP basis set for better geometrical and frequency prediction. The relative energies of low-lying energy isomers of $E_2M_5^+$ were confirmed by the single-point $CCSD(T)^2$ /def2-QZVP calculations, where the T1 values are in a reasonable range (see supporting information, SI) for the single-reference method application. Since the insignificant difference from three M-based species, we only took $E_2Na_5^+$ for the detailed structural and electronic analysis in the main text. The MP2³ and CCSD both with def2-QZVP were further considered for geometries and frequencies of the global minima. The natural bonding orbital (NBO)⁴ and adaptive natural density partitioning (AdNDP) algorithm⁵ analysis were made using Mulitwfn suite⁶ at the CCSD/def2-QZVP level. The structure search is performed using the PSO algorithm within the revolutionary scheme, as implemented in the CALYPSO (Crystal structure Analysis by Particle Swarm Optimization) code.⁷ All calculations were carried out with the GAUSSIAN09 program package.8

Bonding analysis of $E_2Na_5^+$ was performed at the unrestricted BP86/TZ2P level using ADF package.⁹ The EDA-NOCV method combined the energy decomposition analysis (EDA) with natural orbital for chemical valence (NOCV) are applied.¹⁰ The bonding analysis focuses on the instantaneous interaction energy ΔE_{int} , the energy difference between the energy of the molecule A-B and the energies of the prepared fragments A and B, which can be divided into three main components as follows.

$$\Delta E_{int} = \Delta E_{Pauli} + \Delta E_{elstat} + \Delta E_{orb}$$

where, the ΔE_{elstat} term corresponds to the classical electrostatic energy between those fragments and it is generally attractive in nature. The next attractive term is orbital interaction energy, ΔE_{orb} , which arises from the charge transfer and mixing of the occupied and unoccupied orbitals on the fragments and polarization effects. The only repulsive contribution is the Pauli interaction energy (ΔE_{Pauli}) and it is originated from the repulsion between the occupied orbitals of the interacting fragments.

The EDA-NOCV calculation combines the energy and charge decomposition schemes and divides the deformation density, $\Delta \rho(r)$, associated with the bond formation into different components of a chemical bond. From the mathematical point of view, each NOCV, ψ_i is defined as an eigenvector of the deformation density matrix in the basis of fragment orbitals.

$$\Delta P_{\psi i} = \nu_i \psi_i$$

In EDA-NOCV, $\Delta Eorb$ is given by the following equation,

$$\Delta E_{orb} = \sum_{k} \Delta E_{k}^{orb} = \sum_{k=1}^{N/2} v_{k} [-F_{-k}^{TS} + F_{k}^{TS}]$$

where, ${}^{-F}{}^{TS}_{-k}$ and ${}^{F}{}^{TS}_{k}$ are diagonal Kohn-Sham matrix elements corresponding to NOCVs with the eigenvalues ${}^{-\nu_{k}}$ and ${}^{\nu_{k}}$, respectively. The ${}^{\Delta E}{}^{orb}_{k}$ terms are assigned to a particular type of bond by visual inspection of the shape of the deformation density, ${}^{\Delta\rho_{k}}$. The EDA-NOCV scheme thus provides both qualitative (${}^{\Delta\rho_{orb}}$) and quantitative (${}^{\Delta E}{}_{orb}$) information about the strength of orbital interactions in chemical bonds.

Reference

 Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158-6170.
Purvis III, G. D.; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910-1918.
Frisch, M. J.; Head-Gordon, M.; Pople, J. A. A Direct MP2 Gradient Method. Chem. Phys. Lett. 1990, 166, 275-280.
Martin, R. L. Natural Transition Orbitals. J. Chem. Phys. 2003, 118, 4775-4777.
Zubarev, D. Y.; Boldyrev, A. I. Developing Paradigms of Chemical Bonding: Adaptive Natural Density Partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207-5217.
Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J Comput Chem 2012, 33, 580-592.
(a) Wang, Y.; Ma, Y. CALYPSO Structure Prediction Method. Chin. Sci. Bull. 2015, 60, 2580-2587; (b) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A Method for Crystal Structure Prediction. Comput. Phys. Commun. 2012, 183, 2063-2070. (8) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A., et al. Gaussian 09, Revision D.02, Gaussian, Inc., Wallingford CT, **2016**.

(9) (a) Te Velde, G. t.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. *J Comput Chem* **2001**, *22*, 931-967; (b) ADF 2020, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, <u>http://www.scm.com</u>.

(10) (a) Ziegler, T.; Rauk, A. On the Calculation of Bonding Energies by the Hartree Fock Slater Method. *Theor. Chim. Acta* **1977**, *46*, 1-10; (b) Zhao, L.; vonHopffgarten, M.; Andrada, D. M.; Frenking, G. Energy Decomposition Analysis. *WIREs Comput. Mol. Sci.* **2018**, *8*, e1345; (c) Zhao, L.; Hermann, M.; Schwarz, W. E.; Frenking, G. The Lewis Electron-Pair Bonding Model: Modern Energy Decomposition Analysis. *Nat. Rev. Chem.* **2019**, *3*, 48-63; (d) Mitoraj, M. P.; Michalak, A.; Ziegler, T. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. *J. Chem. Theory Comput.* **2009**, *5*, 962-975.

Figure S1. The structure and relative energy in kcal/mol low-lying energy isomers of $E_2Na_5^+$. The relative energies in kcal/mol were computed at the single-point CCSD(T)/def2-QZVP//PBE0/def2-QZVP. The values in parenthesis refer to the CCSD(T) optimizations using cc-pVTZ (cc-pVTZ-PP for In and Tl) basis sets. The point group symmetries and spectroscopic states are given. *C₁ symmetry. #Small imaginary frequency obtained by PBE0 method but a real minimum determined by both MP2 and CCSD methods.

Figure S2. The low-lying energy isomers of $B_2M_5^+$ (M=Li, Na and K) species. The relative energies in kcal/mol were computed at the single-point CCSD(T)/def2-QZVP//PBE0/def2-QZVP and PBE0/def2-QZVP (in parenthesis) levels. All energies are corrected for zero-point energies (ZPE) at the PBE0/def2-QZVP level. The point group symmetries and spectroscopic states are given. The last structure is a transition state (TS). ^a*C*₁ symmetry.

Figure S3. The low-lying isomers of $Al_2M_5^+$ (M=Li, Na and K) species. The relative energies in kcal/mol were computed at the single-point CCSD(T)/def2-QZVP//PBE0/def2-QZVP and PBE0/def2-QZVP (in parenthesis) levels. All energies are corrected for zero-point energies (ZPE) at the PBE0/def2-QZVP level. The point group symmetries and spectroscopic states are given. The last structure is a transition state (TS).

Figure S4. The low-lying isomers of $Ga_2M_5^+$ (M=Li, Na and K) species. The relative energies in kcal/mol were computed at the single-point CCSD(T)/def2-QZVP//PBE0/def2-QZVP and PBE0/def2-QZVP (in parenthesis) levels. All energies are corrected for zero-point energies (ZPE) at the PBE0/def2-QZVP level. The point group symmetries and spectroscopic states are given. The last structure is a transition state (TS). "–"Not available. ^aChange to the global minimum at the MP2/de2-QZVP level. ^b C_1 symmetry.

Figure S5. The low-lying isomers of $In_2M_5^+$ (M=Li, Na and K) species. The relative energies in kcal/mol were computed at the single-point CCSD(T)/def2-QZVP//PBE0/def2-QZVP and PBE0/def2-QZVP (in parenthesis) levels. All energies are corrected for zero-point energies (ZPE) at the PBE0/def2-QZVP level. The point group symmetries and spectroscopic states are given. The last structure is a transition state (TS). "–"Not available. *Imaginary frequency. ^aChange to the global minimum or the second lowest-energy structure at the MP2/de2-QZVP level. ^b $C_{2\nu}$ symmetry. The single point CCSD(T) energy of $In_2K_5^+$ computed using the MOLPRO package without ZPE correction.

Figure S6. The low-lying isomers of $Tl_2M_5^+$ (M=Li, Na and K) species. The relative energies in kcal/mol were computed at the single-point CCSD(T)/def2-QZVP//PBE0/def2-QZVP and PBE0/def2-QZVP (in parenthesis) levels. All energies are corrected for zero-point energies (ZPE) at the PBE0/def2-QZVP level. The point group symmetries and spectroscopic states are given. The last structure is a transition state (TS). "–"Not available. *Imaginary frequency. ^aChange to the global minimum or the second lowest-energy structure at the MP2/de2-QZVP level. ^b D_{5h} symmetry. ^c C_1 symmetry.

Figure S7. a) the direct conversion between two lowest-energy isomers (II \leftrightarrow I), and b) the RMSD vs simulation time of $E_2Na_5^+$ at 400 K obtained at the PBE0/def2-SVP level.

Figure S8. The direct conversion between two lowest-energy isomers (II \leftrightarrow I) of $E_2Li_5^+$ and $E_2K_5^+$ computed at the CCSD(T)/def2-QZVP//PBE0/def2-QZVP level. The single point CCSD(T) of $In_2K_5^+$ using the MOLPRO package.

Figure S9. The ELF contour map of the D_{3h} -symmetry $E_2Na_5^+$ clusters.

Figure S10. Plot of deformation densities $\Delta \rho_{1-3}$ of the pairwise orbital interactions between two ENa⁻ (Quartet) and one Na₃³⁺ (Singlet) fragments in E₂Na₅⁺ (E=Al, Ga, In, Tl), associated interaction energies ΔE_{orb} (in kcal/mol) and eigenvalues v. The eigenvalues v indicate the size of the charge flow, and the direction of charge flow is red—blue.

(1) E	$E_2M_5^+ \rightarrow E_2M_4^-$	$+ M^+$	(2) E	$_2M_5^+ \rightarrow E_2M_4^+$	+ M
	N T .	88.0		N T .	57.8
	M=L1	95.3		M=L1	65.9
E-D	M-N-	75.7	E-D	M-N-	44.7
E-B	Ivi–Iva	82.0	E-B	M-Na	49.0
	M–V	60.9		M–V	34.5
	M-K	65.9		M-K	37.0
	M-I i	69.9		M—I i	40.5
	WI-LI	75.4		NI-LI	45.2
E-A1	M-No	62.0	E-A1	M-No	32.8
E-AI	Ivi—Iva	67.6	E-AI	Ivi—Iva	37.2
	M-K	52.5		M-K	28.1
	IVI-K	61.9		IVI-K	33.3
	M=Li M=Na	71.1	E=Ga	M=Li	42.3
		76.6			46.1
F=Ga		61.6		M=Na	33.0
L Gu	M=K	67.9		111 114	37.4
		51.9		M=K	28.2
		61.9			33.7
	M=Li	67.1		M=Li	39.9
		72.9			41.8
E=In	M=Na	58.7	E=In	M=Na	31.3
	111 114	65.2			35.0
	M=K	50.5		M=K	27.0
		59.1			31.6
	M=Li	64.6		M=Li	38.3
		71.8		IVI-1/1	40.4
E=T1	M=Na	55.4	F=T1	M=Na	28.5
LII	111 114	63.3			33.2
	M=K	48.0		M=K	24.9
	M-K	57.1		M=K	30.3

Table S1. Dissociation pathway in kcal/mol of $E_2M_5^+$ computed at the PBE0/def2-QZVP level.

Table S2. Smallest frequencies (V_{min} , cm⁻¹), NPA charge on E and Li atoms (Q, |e|), Bonding properties (B, Wiberg bond index (WBI) in parenthesis and bond distances (Å)) of the D_{3h} symmetry $E_2Li_5^+$ (I) obtained at the PBE0/def2-QZVP level.

$E_2Li_5^+$	V_{min}	Q_{E}	Q_{Li}	$\mathbf{B}_{\text{E-E}}$	$\mathbf{B}_{\text{E-Li}}$	B _{Li-Li}
E=B	90.9	-1.68	0.88	1.513 (2.96)	2.143 (0.18)	3.517 (0.01)
			0.86		2.167 (0.11)	()
$F=\Lambda 1$	12.5	-1.63	0.83	2410(271)	2.611 (0.27)	4 229 (0.00)
L-AI	12.5	-1.05	0.86	2.410 (2.71)	2.723 (0.12)	4.227 (0.00)
ГС	22.7	1.65	0.85	2241(274)	2.513 (0.23)	4 12((0.00)
E=Ga	33.7	-1.65	0.87	2.341 (2.74)	2.654 (0.12)	4.126 (0.00)
E–In	107	1.50	0.84	2 (75 (2 59)	2.646 (0.24)	1 226 (0.00)
E-III	18.7	-1.39	0.83	2.073 (2.38)	2.838 (0.15)	4.330 (0.00)
F_T 1	-5.7	1 (1	0.86	2.750(2.55)	2.599 (0.20)	4 274 (0.00)
E-11	-5.5	-1.01	0.83	2.730 (2.55)	2.825 (0.15)	4.274 (0.00)
The first	The first line in each row is the M atom contacted linearly with E					

())	- <i>Sn</i> - <i>J</i>	J 2	()			
$E_2Na_5^+$	\mathbf{V}_{min}	$Q_{\rm E}$	Q _{Na}	$\mathbf{B}_{\text{E-E}}$	B _{E-Na}	B _{Na-Na}
E=B	45.0	-1.57	0.82	1.526 (2.96)	2.459 (0.25)	4.149 (0.01)
			0.83		2.514 (0.13)	(000-)
E-A1	20.1	1 5 1	0.77	2 420 (2 60)	2.891 (0.32)	4 704 (0.00)
E-AI	20.1	-1.31	0.83	2.429 (2.00)	3.022 (0.15)	4.794 (0.00)
E C	20.2	1.50	0.78	2	2.812 (0.29)	4 700 (0.00)
E=Ga	20.3	-1.52	0.83	2.360 (2.61)	2.964 (0.15)	4.709 (0.00)
гт	-3.7	1 40	0.78	2(07(245))	2.942 (0.30)	4 001 (0 01)
E=In	-3.7	-1.48	0.80	2.697 (2.45)	3.129 (0.18)	4.891 (0.01)
T. 171	-19.6	1 47	0.79		2.921 (0.26)	4.051 (0.01)
E=11	-19.6	-1.47	0.79	2.771 (2.36)	3.125 (0.19)	4.851 (0.01)
The first	The first line in each row is the M atom contacted linearly with E					

Table S3. Smallest frequencies (V_{min} , cm⁻¹), NPA charge on E and Li atoms (Q, |e|), Bonding properties (B, Wiberg bond index (WBI) in parenthesis and bond distances (Å)) of the D_{3h} symmetry $E_2Na_5^+$ (I) obtained at the PBE0/def2-QZVP level.

Table S4. Smallest frequencies (V_{min} , cm⁻¹), NPA charge on E and Li atoms (Q, |e|), Bonding properties (B, Wiberg bond index (WBI) in parenthesis and bond distances (Å)) of the D_{3h} symmetry $E_2K_5^+$ (I) obtained at the PBE0/def2-QZVP level.

$E_2K_5^+$	V_{min}	$Q_{\rm E}$	Q _K	$\mathbf{B}_{\text{E-E}}$	$\mathbf{B}_{\text{E-K}}$	B _{K-K}
E=B	31.6	-1.51	0.82	1.539 (2.93)	2.889 (0.23)	4.814 (0.02)
22	0110	1.01	0.79	1.009 (2.90)	2.884 (0.16)	
E-A1	20.6	1 56	0.81	2 422 (2 70)	3.314 (0.25)	5 502 (0.01)
E-AI	20.0	-1.50	0.83	2.432 (2.70)	3.401 (0.15)	5.502 (0.01)
E-Ca	21.2	1.52	0.81	22(4(2(6)))	3.232 (0.23)	5 400 (0.01)
E-Ga	21.3	-1.55	0.82	2.304 (2.00)	3.339 (0.16)	5.409 (0.01)
E_L.	14.0	1 57	0.82	2(07(2(0)))	3.362 (0.23)	5(10(0.00))
E-IN	14.8	-1.3/	0.83	2.097 (2.00)	3.508 (0.15)	5.610 (0.00)
р т 1	-1.2	1.50	0.82	2770(251)	3.335 (0.22)	5 570 (0.00)
E=11	-1.2	-1.36	0.83	2.770 (2.51)	3.501 (0.16)	5.570 (0.00)
The first line in each row is the N atom contacted linearly with E						

Stretching mode	$E_2M_5^+$	Previous reported
B=B	1230.4	1658.3 <mark>(OCBBOC)</mark>
Al=Al	429.2	
Ga≡Ga	298.9	
In=In	217.2	
T1≡T1	194.8	

Table S5. Calculated E=E stretching frequency (cm⁻¹) of $E_2M_5^+$ obtained at the CCSD/def2-QZVP level.

				21 /		
	ENa^{-} (Doublet) + ENa^{-} (Doublet) + Na_{3}^{3+} (Singlet)					
	E=B	E=A1	E=Ga	E=In	E=Tl	
ΔE_{int}	-716.9	-580.9	-585.5	-561.4	-553.5	
ΔE_{Pauli}	480.3	301.5	345.9	331.7	355.4	
$\Delta E_{elstat}^{[a]}$	-740.3 (61.8%)	-590.1 (66.9%)	-636.3 (68.3%)	-620.7 (69.5%)	-643.0 (70.7%)	
$\Delta E_{orb}^{[a]}$	-456.9 (38.2%)	-292.3 (33.1%)	-295.2 (31.7%)	-272.4 (30.5%)	-266.0 (29.3%)	
$\Delta E_{orb1}^{[b]}$	-279.1 (60.9%)	-192.3 (65.7%)	-191.2 (64.7%)	-177.9 (65.2%)	-170.9 (64.2%)	
$\Delta E_{orb2}^{[b]}$	-45.8 (10.0%)	-41.6 (14.2%)	-41.1 (13.9%)	-41.9 (15.4%)	-42.4 (15.9%)	
$\Delta E_{orb3}^{[b]}$	-121.4 (26.5%)	-53.3 (18.2%)	-54.3 (18.4%)	-45.8 (16.8%)	-43.9 (16.5%)	
$\Delta E_{orb(rest)}^{[b]}$	-11.7 (2.5%)	-5.4 (1.9%)	-8.9 (3.0%)	-7.1 (2.6%)	-8.9 (3.3%)	

Table S6. EDA-NOCV results of $E_2Na_5^+$ using the interacting fragments (two ENa⁻ and one Na₃³⁺) at the BP86/TZ2P level of theory. Energy values are given in kcal/mol.

^aThe values in parentheses give the percentage contribution to the total attractive interactions $\Delta E_{elstat}+\Delta E_{orb}$

 bThe values in parentheses give the percentage contribution to the total orbital interactions ΔE_{orb}

Table S7. Energy components of interacting quantum atoms (IQA) analysis in kcal/mol for the D_{3h} -symmetry $E_2Na_5^+$ (E = group 13 elements) systems, where inter-atomic interaction energy (V_{Total}) can be evaluated and decomposed into electrostatic (ionic, V_{Ionic}) and exchange (covalent, $V_{Coval.}$) contributions.

$E_2Na_5^+$	E=B	E=Al	E=Ga	E=In	E=T1
V _{Total} (E-E)	-97.91	-53.97	-54.07	-52.04	-59.49
V _{Coval.} (E-E)	-282.64	-166.53	-174.47	-159.43	-168.55
$V_{Ionic}(E-E)$	184.73	112.57	120.40	107.38	109.06
V _{Total} (E-Na)	-173.00	-124.31	-127.80	-119.25	-126.34
V _{Coval.} (E-Na)	-36.46	-32.20	-30.67	-31.87	-34.61
V _{Ionic} (E-Na)	-136.53	-92.12	-97.13	-87.38	-91.73
V _{Total} (E-Na')	-135.31	-98.44	-100.86	-89.39	-96.90
V _{Coval.} (E-Na')	-19.66	-18.84	-18.03	-18.17	-19.22
V _{Ionic} (E-Na')	-115.64	-79.59	-82.83	-71.22	-77.69

I. Coordinates obtained at the CCSD/def2-QZVP level.

$B_2Na_5^+$

1021 (113)			
Lowes	t Frequencies	45.4533 cm ⁻¹	
Sum o	f electronic and zero-	point Energies=	-858.767429 (Hartree)
Sum o	f electronic and therm	nal Energies=	-858.756209 (Hartree)
Sum o	f electronic and therm	nal Enthalpies=	-858.755265 (Hartree)
Sum o	f electronic and therm	nal Free Energies=	-858.805526 (Hartree)
В	0.000000000	0.000000000	0.764898000
В	0.000000000	0.000000000	-0.764898000
Na	0.000000000	0.000000000	-3.267646000
Na	0.000000000	0.000000000	3.267646000
Na	0.000000000	2.437606000	0.00000000
Na	2.111029000	-1.218803000	0.00000000
Na	-2.111029000	-1.218803000	0.000000000

$Al_2Na_5^+$

Lowest Frequencies	27.2346 cm ⁻¹	
Sum of electronic and zer	o-point Energies=	-1293.286994 (Hartree)
Sum of electronic and the	rmal Energies=	-1293.273761 (Hartree)
Sum of electronic and the	rmal Enthalpies=	-1293.272817 (Hartree)
Sum of electronic and the	rmal Free Energies=	-1293.331720 (Hartree)

Al	0.000000000	0.000000000	1.215675000
Al	0.000000000	0.000000000	-1.215675000
Na	0.000000000	0.000000000	-4.147635000
Na	0.000000000	0.000000000	4.147635000
Na	0.000000000	2.818419000	0.000000000
Na	2.440823000	-1.409210000	0.000000000
Na	-2.440823000	-1.409210000	0.000000000

Ga₂Na₅⁺

Lowest Freque	ncies	34.4781 cm ⁻¹	
Sum of electro	nic and zero-	-point Energies=	-4656.407433 (Hartree)
Sum of electro	nic and therr	nal Energies=	-4656.393853 (Hartree)
Sum of electro	nic and therr	nal Enthalpies=	-4656.392908 (Hartree)
Sum of electro	nic and therr	nal Free Energies=	-4656.453637 (Hartree)
Ca 0.0	0000000	0.00000000	1 170152000

Ga	0.000000000	0.000000000	1.170158000
Ga	0.000000000	0.000000000	-1.170158000
Na	0.000000000	0.000000000	-4.014042000
Na	0.000000000	0.000000000	4.014042000
Na	0.000000000	2.755516000	0.000000000

Na	2.386347000	-1.377758000	0.000000000
Na	-2.386347000	-1.377758000	0.000000000

In₂Na₅⁺

Lowest Frequencies	20.8605 cm ⁻¹	
Sum of electronic and zero-p	point Energies=	-1188.636688
Sum of electronic and thermal Energies=		-1188.622650
Sum of electronic and thermal Enthalpies=		-1188.621706
Sum of electronic and therm	al Free Energies=	-1188.685122

In	0.000000000	0.000000000	1.338470000
In	0.000000000	0.000000000	-1.338470000
Na	0.000000000	0.000000000	-4.312100000
Na	0.000000000	0.000000000	4.312100000
Na	0.000000000	2.858960000	0.000000000
Na	2.475932000	-1.429480000	0.000000000
Na	-2.475932000	-1.429480000	0.000000000

$Tl_2Na_5^+$

Lowest Frequencies 16.73	585 cm ⁻¹	
Sum of electronic and zero-point	Energies=	-1153.474582 (Hartree)
Sum of electronic and thermal En	ergies=	-1153.460435 (Hartree)
Sum of electronic and thermal En	thalpies=	-1153.459491 (Hartree)
Sum of electronic and thermal Free	ee Energies=	-1153.524470 (Hartree)

T1	0.000000000	0.000000000	1.352890000
T1	0.000000000	0.000000000	-1.352890000
Na	0.000000000	0.000000000	-4.288430000
Na	0.000000000	0.000000000	4.288430000
Na	0.000000000	2.816520000	0.000000000
Na	2.439178000	-1.408260000	0.000000000
Na	-2.439178000	-1.408260000	0.000000000

II. Coordinates and vibrational frequencies (cm⁻¹) of the D_{3h} symmetry $E_2M_5^+$ obtained at the MP2/def2-QZVP level.

$B_2Li_5^+$ MP2= -86	5.737785		
Frequenci Coordinat	es = 93.8918		
R		0.00000000	0 762585000
B	0.0000000000	0.000000000	-0 762585000
Li	0.000000000	0.000000000	-2 942599000
Li	0.000000000	0.000000000	2.942599000
Li	0.000000000	2 061737000	0.00000000
Li	1 785517000	-1 030868000	0.000000000
Li	-1 785517000	-1.030868000	0.000000000
LI	-1.785517000	-1.050808000	0.000000000
$B_2Na_5^+$			
MP2= -85	8.7805421		
Frequenci	es = 45.4120		
Coordinat	e:		
В	0.000000000	0.000000000	0.766291000
В	0.000000000	0.000000000	-0.766291000
Na	0.000000000	0.000000000	-3.290419000
Na	0.000000000	0.000000000	3.290419000
Na	0.000000000	2.445437000	0.000000000
Na	2.117811000	-1.222719000	0.000000000
Na	-2.117811000	-1.222719000	0.000000000
$B_2K_5^+$			
MP2 = -30	45.2939323		
Frequenci	es= 29.7079		
Coordinat	e:		
В	0.000000000	0.000000000	0.769806000
В	0.000000000	0.000000000	-0.769806000
Κ	0.000000000	0.000000000	-3.804210000
Κ	0.000000000	0.000000000	3.804210000
Κ	0.000000000	2.903680000	0.000000000
Κ	2.514660000	-1.451840000	0.000000000
K	-2.514660000	-1.451840000	0.000000000
Al ₂ Li ₅ +			
MP2= -52	1.2007097		
Frequenci	es= 35.5352		
Coordinat	e:		
Al	0.000000000	0.000000000	1.217565000

Al	0.000000000	0.000000000	-1.217565000
Li	0.000000000	0.000000000	-3.860269000
Li	0.000000000	0.000000000	3.860269000
Li	0.000000000	2.470053000	0.000000000
Li	2.139128000	-1.235026000	0.000000000
Li	-2.139128000	-1.235026000	0.000000000
Al ₂ Na	\mathfrak{h}_5^+		
MP2=	-1293.2858486		
Frequ	encies= 27.2676		
Coord	linate:		
Al	0.000000000	0.000000000	1.223348000
Al	0.000000000	0.000000000	-1.223348000
Na	0.000000000	0.000000000	-4.174243000
Na	0.000000000	0.000000000	4.174243000
Na	0.000000000	2.813658000	0.000000000
Na	2.436700000	-1.406829000	0.000000000
Na	-2.436700000	-1.406829000	0.000000000
Al ₂ K ₅	+		
MP2=	-3479.8263697		
Frequ	encies=20.4157		
Coord	linate:		
Al	0.000000000	0.000000000	1.226445000
Al	0.000000000	0.000000000	-1.226445000
Κ	0.000000000	0.000000000	-4.661767000
Κ	0.000000000	0.000000000	4.661767000
Κ	0.000000000	3.292701000	0.000000000
Κ	2.851563000	-1.646351000	0.000000000
K	-2.851563000	-1.646351000	0.000000000
Ga ₂ Li	5+		
MP2=	-3884.3668431		
Frequ	encies= 51.7901		
Coord	linate:		
Ga	0.000000000	0.000000000	1.160928000
Ga	0.000000000	0.000000000	-1.160928000
Li	0.000000000	0.000000000	-3.687140000
Li	0.000000000	0.000000000	3.687140000
Li	0.000000000	2.393381000	0.000000000
Li	2.072729000	-1.196690000	0.000000000
Li	-2.072729000	-1.196690000	0.000000000

 $Ga_2Na_5^+$

MP2=	-4656.4466972		
Freque	encies= 34.0326		
Coord	inate:		
Ga	0.000000000	0.000000000	1.166433000
Ga	0.000000000	0.000000000	-1.166433000
Na	0.000000000	0.000000000	-4.016455000
Na	0.000000000	0.000000000	4.016455000
Na	0.000000000	2.744102000	0.000000000
Na	2.376462000	-1.372051000	0.000000000
Na	-2.376462000	-1.372051000	0.000000000
Ga ₂ K ₅	+		
MP2=	- 6842.9833134		
Freque	encies= 22.0166		
Coord	inate:		
Ga	0.000000000	0.000000000	1.169867000
Ga	0.000000000	0.000000000	-1.169867000
Κ	0.000000000	0.000000000	-4.495349000
Κ	0.000000000	0.000000000	4.495349000
Κ	0.000000000	3.223066000	0.000000000
Κ	2.791257000	-1.611533000	0.000000000
K	-2.791257000	-1.611533000	0.000000000
In ₂ Li ₅	+		
MP2=	-416.6338318		
Freque	encies= 34.6986		
Coord	inate:		
In	0.000000000	0.000000000	1.321164000
In	0.000000000	0.000000000	-1.321164000
Li	0.000000000	0.000000000	-3.970606000
Li	0.000000000	0.000000000	3.970606000
Li	0.000000000	2.494457000	0.000000000
Li	2.160263000	-1.247228000	0.000000000
Li	-2.160263000	-1.247228000	0.00000000
In ₂ Na ₅	5+		
MP2=	-1188.7217774		
Freque	encies= 20.8133		
Coord	inate:		
In	0.000000000	0.000000000	1.328117000
In	0.000000000	0.000000000	-1.328117000
Na	0.000000000	0.000000000	-4.292702000
Na	0.000000000	0.000000000	4.292702000
Na	0.000000000	2.828361000	0.000000000

Na	2.449433000	-1.414181000	0.000000	0000
Na	-2.449433000	-1.414181000	0.000000	0000
In ₂ K5	+			
MP2=	-3374.43653876			
Freau	iencies = 66.28			
Coord	dinate:			
In	0.00000000	-0.00000	00884	1.3972142175
In	0.00000000	-0.00000	00884	-1.3972142175
K	0.0000000	000 3.3634	631815	0.0000000000
K	0.0000000	000 0.0000	000933	-4.9137984972
K	2.9128444	-1.6817	320957	0.0000000000
K	-2.91284442	-1.68173	320957	0.0000000000
K	0.0000000	000 0.0000	000933	4.9137984972
Tl ₂ Li	5 ⁺			
MP2=	-381.5177766			
Frequ	encies= 52.5080			
Coord	dinate:			
Tl	0.000000000	0.000000000	1.33731	0000
Tl	0.000000000	0.000000000	-1.33731	0000
Li	0.000000000	0.000000000	-3.93160	5000
Li	0.000000000	0.000000000	3.93160)5000
Li	0.000000000	2.445251000	0.00000	00000
Li	2.117650000	-1.222626000	0.00000	0000
Li	-2.117650000	-1.222626000	0.00000	0000
Tl ₂ Na	h 5 ⁺			
MP2=	-1153.6048856			
Frequ	encies= 24.8903			
Coord	dinate:			
T1	0.000000000	0.000000000	1.341525	5000
T1	0.000000000	0.000000000	-1.341525	000
Na	0.000000000	0.000000000	-4.2723120	000
Na	0.000000000	0.000000000	4.272312	000
Na	0.000000000	2.784157000	0.000000	000
Na	2.411151000	-1.392079000	0.000000	000
Na	-2.411151000	-1.392079000	0.0000000	000
Tl_2K_5	+			
MP2=	= -3340.14467515			
Frequ	encies= 21.2636			
Coord	dinate:			
Tl	0.000000000	0.000000000	1.342215	5000

T1	0.000000000	0.000000000	-1.342215000	
Κ	0.000000000	0.000000000	-4.746312000	
Κ	0.000000000	0.000000000	4.746312000	
Κ	0.000000000	3.277273000	0.000000000	
Κ	2.838202000	-1.638636000	0.000000000	
Κ	-2.838202000	-1.638636000	0.000000000	