Supporting Information:

Transient FTIR spectroscopy after one- and two-colour excitation on a highly luminescent chromium(III) complex

Pit Boden^a, Patrick Di Martino-Fumo^a, Gereon Niedner-Schatteburg^a, Wolfram Seidel^b, Katja Heinze^{*c} and Markus Gerhards^{a†}

Table of contents

Luminescence investigations	S2
Determination of the spectral overlap of aromatic CH overtones wi phosphorescence	th the S6
Discussion of the electron configurations of the excited doublet states	S7
Vibrational spectroscopy of ground and excited states	S8
Pump/pump/probe (FTIR) and pump/dump/probe (FTIR) experiments	S18
References	S20

^{a.} Department of Chemistry and Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany.

^{b.} Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. E-mail: wolfram.seidel@uni-rostock.de

 ^{c.} Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
E-mail: katja.heinze@uni-mainz.de

⁺ During manuscript finalisation, Prof. Markus Gerhards deceased.

Luminescence investigations

Fig. S1: Phosphorescence spectra of $1(BF_4)_3$ as KBr pellet between 290 K and 10 K at λ_{ex} = 420 nm. The inset shows the region of the transition at about 739 nm, where the low energy emission is normalized to 1 for better visibility of the high energy band at 739 nm.

Fig. S2: Phosphorescence spectra of $1(BF_4)_3$ as KBr pellet between 290 K and 170 K at a) $\lambda_{ex} = 355$ nm and b) $\lambda_{ex} = 420$ nm (offset corrected).

Fig. S3: Boltzmann plot for $1(BF_4)_3$ as KBr pellet showing the correlation between the relative intensities of the two phosphorescence bands (I_{HE}/I_{LE}, HE = high energy emission, LE = low energy emission) and temperature between 290 K and 170 K at a) λ_{ex} = 355 nm and b) λ_{ex} = 420 nm. For the series with λ_{ex} = 355 nm the spectrum at 170 K was not considered due to the low intensity of the high energy band.

Fig. S4: Phosphorescence spectra of $1(BF_4)_3$ as KBr pellet between 100 K and 10 K at a) $\lambda_{ex} = 355$ nm and b) $\lambda_{ex} = 420$ nm.

Determination of the spectral overlap of aromatic CH overtones with the phosphorescence

The non-radiative deactivation by relaxation *via* CH overtones mainly concerns the CH groups closest to the metal centre. Hence, the mainly aromatic CH stretching vibrations involving the α -CH groups of the terminal pyridine rings (Cr···H distances down to 3.0 Å^[1]) should be considered here. The FTIR ground state vibration at 3071 cm⁻¹ in KBr is dominated by the stretching motion of the α -CH groups according to DFT calculations (Fig. S5). The spectral frequency of the relevant fourth overtone was estimated by a Birge-Sponer extrapolation of the corresponding fundamental frequency of the static ground state spectrum, preceded by a gaussian convolution. The general anharmonicity constant with $x_e \approx 59 \text{ cm}^{-1}$ was applied here, which had been determined in earlier works by NIR measurements on a model ligand of ddpd (6,6′-dimethyl-2,2′-bipyridine).^[1] The spectral overlap of the phosphorescence with the mentioned vibrational overtone is significant at 290 K, but decreases upon cooling and is close to zero at 170 K due to the vanishing high energy emission band.

Fig. S5: a) Ground state FTIR spectra of $1(BF_4)_3$ as KBr pellet in the aromatic CH stretching region at 290 K (red) and 20 K (black) as well as calculated frequency of the aromatic CH stretching vibration of of 1^{3+} involving mainly the α -CH groups of the terminal pyridines and b) representation of the mentioned vibration $\nu(C_{PY-6}-H)_{arom-}$ Calculation: UDFT/B3LYP/def2-TZVP, scaled by 0.96.

Fig. S6: Luminescence spectra of $1(BF_4)_3$ as KBr pellet in the temperature range of 290 K – 10 K (λ_{ex} = 355 nm) normalized to the low energy emission bands and approximated fourth CH overtone of the aromatic CH stretching mode involving mainly the α -CH groups of the terminal pyridines.

Discussion of the electron configurations of the excited doublet states

For the ${}^{2}T_{1}$ -derived microstate calculated at the ground state geometry a larger contribution of the $(d_{yz})^{2}(d_{xz})^{0}(d_{xy})^{1}$ configuration has been calculated as 65 % with a smaller admixture of $(d_{yz})^{0}(d_{xz})^{2}(d_{xy})^{1}$ with 28 %.^[2] This unbalanced electron distribution might well accompany a stronger distortion along x or y axes, leaving the Cr-N distances along the z axis (the central pyridine rings) almost unaffected. Supposed that the $(d_{yz})^{2}(d_{xz})^{0}(d_{xy})^{1}$ configuration dominates in the lowest excited doublet state, the significant difference to the ground state electron configuration $(d_{yz})^{1}(d_{xz})^{1}(d_{xy})^{1}$ becomes obvious and electron density has been transferred from the xz plane to the yz plane of the complex in the lowest excited state. In a true spin-flip state (²E) (^)(^)(\downarrow) such a redistribution of electron density between d orbitals would be absent.

Vibrational spectroscopy of ground and excited states

Fig. S7: Ground state FTIR spectrum of $1(BF_4)_3$ as KBr pellet (red) with DFT calculated ${}^{4}A_2$ ground state IR absorption frequencies (blue) and calculated ${}^{4}A_2$ ground state IR absorption spectrum of 1^{3+} (green) (DFT/B3LYP/def2-TZVP, FWHM = 15 cm⁻¹, pseudo-Voigt profile, scaled by 0.98).

Fig. S8: Ground state Raman spectrum of $\mathbf{1}(BF_4)_3$ as solid (black) with DFT calculated ${}^{4}A_2$ ground state Raman absorption frequencies (red) and calculated ${}^{4}A_2$ ground state Raman absorption spectrum of $\mathbf{1}^{3+}$ (orange) (DFT/B3LYP/def2-TZVP, FWHM = 8 cm⁻¹, pseudo-Voigt profile, scaled by 0.98).

Fig. S9: Ground state Raman spectra of $1(BF_4)_3$ as solid at different excitation wavelengths ($\lambda_{ex} = 633 \text{ nm}$ (red); 532 nm (green) and 473 nm (blue) as well as DFT calculated ${}^{4}A_2$ ground state Raman absorption spectrum of 1^{3+} (orange) (DFT/B3LYP/def2-TZVP, FWHM = 15 cm⁻¹, pseudo-Voigt profile, scaled by 0.98).

Fig. S10: Ground state FTIR spectrum of NaBF₄ in KBr at room temperature.

$\tilde{\nu}$ / cm ⁻¹		Description
measured	calcd. (scaled by 0.98)	
1608	1612	Symmetric C ₂ -C ₃ /C ₅ -C ₆ stretching of terminal pyridine moieties
1584	1584	Symmetric C ₂ -C ₃ /C ₅ -C ₆ stretching of central pyridine moieties
1569	1571	Antisymmetric C ₄ -C ₃ /C ₄ -C ₅ stretching of all pyridine moieties
1498	1496	C-H scissoring in the pyridine moieties, accompanied with C-N and C-C stretching
1452	1456	C-H scissoring in the pyridine moieties, accompanied with C-N and C-C stretching
1435	1433	C-H rocking in the pyridine moieties
1368	1350	Antisymmetric N-C stretching of py- N-py, accompanied with C-H rocking of pyridine
1345	1334	Antisymmetric N-C stretching of py- N-py, accompanied with C-H rocking of pyridine
1239	1232	Symmetric N-C stretching of py-N- py, accompanied with C-H rocking of pyridine
1140	1138	C-H scissoring in the pyridine moieties, accompanied with C-N stretch of N-Me
1123	1118	C-H rocking of the methyl groups
1083	1091	C-N stretch of N-Me, accompanied with C-H scissoring in the pyridine moieties
1035	1012	Cr-N stretching, accompanied with breathing of the terminal pyridine rings
948	943	Cr-N rocking, accompanied with N-C stretching of py-N-py and C-H rocking of pyridine

Table S1: Wavenumbers and assignment of the vibrations of $1(BF_4)_3$ in the ground state FTIR spectrum at 290 K (KBr).

ν̈́	′ cm ⁻¹	Description
measured	calcd. (scaled by 0.98)	•
1614	1613	Symmetric C ₂ -C ₃ /C ₅ -C ₆ stretching of terminal pyridine moieties
1586	1583	Antisymmetric C_3 - C_4/C_4 - C_5 stretching and C-N stretching of pyridine moieties
1571	1572	Antisymmetric C_3 - C_4/C_4 - C_5 stretching and C-N stretching of pyridine mojeties
1494	1502	C-H bending of the methyl moieties
1428	1433	Antisymmetric C-H in plane rocking of central pyridine moieties and C-H bending of methyl moieties
1346	1352	C-H in plane rocking of terminal pyridine moieties, accompanied with C-N stretching and C-H bending of methyl moieties
1315	1299	C-H in plane rocking of pyridine moieties, accompanied with C-C and C-N stretching of the pyridine moieties
1286	1281	C-H in plane rocking, accompanied with C-N stretching in the pyridine moieties
1266	1258	C-C and C-N stretching vibrations, accompanied with C-H in plane rocking of the pyridine moieties and C-H bending of the methyl moieties
1181	1208	C-H in plane bending of terminal pyridine moieties
1128	1118	C-H bending of methyl moieties
1066	1075	C-N stretching accompanied with C-H in plane bending of terminal pyridine moieties
1028	1016	Symmetric C-N streching of py-N-py, accompanied with breathing of the pyridine moieties
779	774	C-C and C-N in plane bending of pyridine moieties
717	714	Symmetric Cr-N stretching, accompanied with C-C and C-N in plane bending of the pyridine moieties
681	685	C-C and C-N out of plane of the central pyridine moieties, accompanied with C-C and C-N in plane bending of the terminal pyridines
627	623	Symmetric Cr-N stretching, coupled with C-C and C-N in plane bending of the pyridine moieties
526	527	C-C and C-N out of plane of the terminal pyridine moieties
513	505	py-N-py bending, accompanied with C-C and C-N bending of the terminal pyridine moieties
460	457	N-Cr-N bending accompanied with C-C and C-N bending of central pyridine moieties
414	411	Symmetric Cr-N stretching, accompanied with C-N stretching of py-N-py
283	280	Cr-N bending

Table S2: Wavenumbers and assignment of the vibrations of $1(BF_4)_3$ in the Raman spectrum at 290 K (KBr).

positive bands in	Ground state (static FTIR)	Excited state (step-scan FTIR)	the step-scan
difference	1608	1600	spectrum at
200 1/	1584	1576	
290 K.	1569	1562	
	1498	1481	
	1452	1426	
	1435	1414	
	1368	-	
	1345	-	
	1239	1246	
	1140	-	
	1123	-	
	1083	-	
	1055	-	
	1035	1012	

Table S3: Wavenumbers of the vibrations of $1(BF_4)_3$ in the ground state FTIR spectrum and of the

Fig. S11: Pump (355 nm)/step-scan FTIR probe spectrum of $1(BF_4)_3$ 0.5 to 5.0 µs after excitation and ground state FTIR spectrum (black) in acetonitrile-d₃ (red).

Fig. S12: Pump (355 nm)/step-scan FTIR probe spectra of $1(BF_4)_3$ 0.5 to 5.0 µs after excitation in acetonitrile-d₃ (black) and in KBr at 290 K (red). The ground state FTIR spectrum in acetonitrile-d₃ (grey) is depicted for comparison.

Table S4:	Ground state (static FTIR)	Excited state (step-scan FTIR)	Wavenumbers of
the vibrations of	1613	-	1 (BF₄)₃ in the
ground state FTIR	1608	1603	spectrum and the
positive bands in	1586	1579	the step-scan
difference	1499	1478	spectrum in
acetonitrile-d₃.	1455	1431	
	1438	1416	
	1369	-	
	1240	1244	

Fig. S13: Pump (355 nm)/step-scan FTIR probe spectra of $1(BF_4)_3$ as KBr pellet 0 to 2 μ s (red), 20 to 22 μ s (blue) and 48 to 50 μ s (black) after excitation at 20 K.

Fig. S14: Biexponential decay fits performed for the time traces of the intensity of the IR band at 1500 cm^{-1} of $1(BF_4)_3$ as KBr pellet at a) 20 K (green) and b) 290 K (blue) in KBr. The dots represent the smoothed raw data.

Fig. S15: Time traces of the IR intensity of 11 prominent bands (dots represent the smoothed data) of $1(BF_4)_3$ as KBr pellet at 290 K and global biexponential fits (convolution with Gaussian pulse shape).

Fig. S16: Time traces of the IR intensity of 9 prominent bands (dots represent the smoothed data) of $1(BF_4)_3$ as KBr pellet at 20 K and global biexponential fits (convolution with Gaussian pulse shape).

Fig. S17: Biexponential decay fits performed for the time traces of the intensity of the IR band at 1431 cm^{-1} of $1(BF_4)_3$ in acetonitrile-d₃. The monoexponential components are illustrated for the latter one. The dots represent the smoothed raw data.

516

medium	method	<i>t</i> ₁ / ns	<i>t</i> ₂ / μs	<i>t</i> ₃ / μs	$A_{1} / \%$	A2/%	A3 / %
KBr / RT	Step-scan	/	1.3 ± 0.1	22 ± 1	/	14	86
	TCSPC*	87 ± 7	1.0 ± 0.1	27 ± 3	2	7	91
KBr / 20 K	Step-scan	/	11.7 ± 0.3	145 ± 1	/	7	93
CD₃CN	Step-scan⁺	/	5.39 ± 0.04	105.0 ± 0.3	/	6	94
	TCSPC** ^[3]	/	/	810	/	/	/

Fig. S18: Time traces of the IR intensity of 10 prominent bands (dots represent the smoothed data) of

1(BF₄)₃ in acetonitrile-d₃ at 290 K and global biexponential fits (convolution with Gaussian pulse shape).

Table S5: Lifetimes of $1(BF_4)_3$ in the KBr matrix and in acetonitrile-d₃ according to step-scan FTIR and TCSPC.

(*): λ_{ex} = 389 nm; λ_{em} = 780 nm (**): λ_{ex} = 435 nm; λ_{em} = 780 nm

(+): The lower time constant of 104 μ s compared to 810 μ s in earlier works^[3] probably results from O₂ contamination in the step-scan sample.

Fig. S19: Decay curve and triexponential fit obtained from TCSPC data at 290 K (λ_{ex} = 389 nm, λ_{em} = 780 nm, KBr).

Pump/pump/probe (FTIR) and pump/dump/probe (FTIR) experiments

Fig. S20: Pump (781 nm)/step-scan FTIR probe spectra of $1(BF_4)_3$ as KBr pellet 0.5 to 5.0 µs after excitation at 290 K (red) and 20 K (black) as well as ground state FTIR spectrum (grey) at 290 K. The bands marked with asterisks are discussed in the manuscript.

Fig. S21: Pump (355 nm)/pump (785 nm)/step-scan FTIR probe (black) and pump (355 nm)/step-scan FTIR probe (red) (355 nm) spectra of $1(BF_4)_3$ as KBr pellet 0.5 to 5.0 µs after excitation, both at 20 K. The bands marked with asterisks are discussed in the manuscript.

Fig. S22: Pump (355 nm)/step-scan FTIR probe spectrum (red) of $1(BF_4)_3$ as KBr pellet 0.5 to 5.0 µs after excitation and ground state FTIR spectrum (black) at 20 K. The bands marked with asterisks are discussed in the manuscript.

Fig. S23. Pump (355 nm)/pump (741 nm)/step-scan FTIR probe (black) and pump (355 nm)/step-scan FTIR probe (red) spectra of $1(BF_4)_3$ as KBr pellet 0.5 to 5.0 µs after excitation, both at 20 K. The bands marked with asterisks are discussed in the manuscript.

Fig. S24: Pump (741 nm)/step-scan FTIR probe spectrum of $1(BF_4)_3$ as KBr pellet 0.5 to 5.0 μ s (red) after excitation and ground state FTIR spectrum (black) at 20 K. The bands marked with asterisks are discussed in the manuscript.

References:

[1] C. Wang, S. Otto, M. Dorn, E. Kreidt, J. Lebon, L. Sršan, P. Di Martino-Fumo, M. Gerhards, U. Resch-Genger, M. Seitz and K. Heinze, *Angew. Chem. Int. Ed.* 2018, **57**, 1112–1116.

[2] S. Otto, J. P. Harris and K. Heinze, Angew. Chem. Int. Ed. 2018, 57, 11069–11073.

[3] S. Otto, M. Grabolle, C. Förster, C. Kreitner, U. Resch-Genger and K. Heinze, *Angew. Chem. Int. Ed.* 2015, **54**, 11572–11576.