Supporting information for

First-principles study of phthalocyanine-based multifunctional spintronic

molecular device

Yang Song^a, Chuan-Kui Wang^a, Gang Chen^{a,b,*}, and Guang-Ping Zhang^{a,*}

^aShandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China ^bSchool of Physics and Technology, University of Jinan, Jinan 250022, China

^{*}Corresponding authors.

Email-address: phdgchen@163.com(Gang Chen), zhangguangping@sdnu.edu.cn(Guang-Ping Zhang)

Table S1. Magnetic moments of central TMPc molecules for the devices at 0 V. A positive value means the TMPc molecule is spin-up polarized while a negative value means the TMPc molecule is spin-down polarized.

Molecular Device	M1	C1	M2	C2	M3
Magnetic Moment (µ _B)	3.079	3.789	-3.093	-3.745	3.086

Fig. S1. Spin polarized *I-V* curves for device C2.

Fig. S2. (a, b) Spin polarized transmission spectra and band structures of both electrodes for C2 at 0 V and 0.4 V. The black and red triangle symbols point to the eigenvalues of spin-up and spin-down frontier molecular orbitals, respectively. (c) Evolution of spin polarized MPSH engenvalues under bias voltages for C2. (d) Spatial distribution of frontier orbitals for C2.

Fig. S3. Spin polarized *I-V* curves for Pc device, in which the two electrodes are antiparallelly spin polarized.

Fig. S4. Spin polarized *I-V* curves for CrPc-based device, in which the two electrodes are antiparallelly spin polarized.