ELECTRONIC SUPPORTING INFORMATION

Exploring the transition of polydopamine-shelled perfluorohexane emulsion droplets into microbubbles using small- and ultra-small-angle neutron scattering

Mark Louis P. Vidallon,^a Luke W. Giles,^a Simon Crawford,^b Alexis I. Bishop,^c Rico F. Tabor,^a Liliana de Campo,^{*d} and Boon Mian Teo^{*a}

^a School of Chemistry, Monash University, Clayton, VIC, Australia 3800

^b Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia 3800

^c School of Physics and Astronomy, Monash University, Clayton, VIC, Australia 3800

^d Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia 2234

SUPPLEMENTARY FIGURES

Figure S1. Representative transmission electron micrographs. PDA/PFH emulsion droplets with polymerisation times of 2 hours (**A**) and 4 hours (**B**). Emulsion droplets with broken and "flipped" PDA shells (**C**). Collapsed, dried PDA shells of PDA/PFH emulsion droplets with polymerisation times of 1 hour (**D1** and **D2**), 3 hours (**D3** and **D4**), and 5 hours (**D5** and **D6**). Collapsed PDA shells surrounding curved regions that are potentially interfaces of preexistent emulsions or bubbles (**E**). Yellow lines indicate the suspected interface of the colloidal material. Scale bars = 100 nm (**A**, **B**, **C**, **D1–D3**, **D5**, **D6**, and **E**) and 50 nm (**D4** and **D6**).

Figure S2. 2D plots of the USANS spectra of samples 2H (**A**) and 4H (**B**) in bubblematched medium (9% $D_2O/$ 91% H_2O) and of samples 2H (**C**) and 4H (**D**) in dropletmatched medium (61% $D_2O/$ 39% H_2O) at different temperatures. **E**, **F**, **G**, and **H** shows **A**, **B**, **C**, and **D**, respectively, with vertical offset (10× original scattering intensity per temperature increment). Scattering intensities in 61% $D_2O/$ 39% H_2O and in 9% $D_2O/$ 91% H_2O arise from microbubbles and emulsion droplets, respectively.

Figure S3. 2D plots of the SANS spectra of samples 2H (**A**) and 4H (**B**) in bubble- matched medium (9% $D_2O/91\%$ H₂O). **C** and **D** shows **A** and **B**, respectively, with vertical offset (10× original scattering intensity per temperature increment). Scattering intensities in 9% $D_2O/91\%$ H₂O arise mainly from emulsion droplets.

Figure S4. Scatter plots and model fitting (red line) of the USANS spectra of PDA/PFH emulsions (polymerisation times = 2 hours (**A**) and 4 hours (**B**)) in different contrast-matched dispersing media at 20°C, 90°C, and 20°C (after cooling from 90°C). Scattering intensities in 61% $D_2O/39\%$ H₂O and in 9% $D_2O/91\%$ H₂O arise from microbubbles and emulsion droplets, respectively.

Table S1. Power-law exponents calculated from SANS spectra of emulsion samples in bubble-matched media (9% $D_2O/$ 91% H_2O).

Temperature (°C)	Power-law exponent	
	Sample 2H	Sample 4H
20	4.00 ± 0.01	4.00 ± 0.02
30	4.00 ± 0.01	4.00 ± 0.02
40	4.00 ± 0.01	4.00 ± 0.01
50	4.00 ± 0.01	4.00 ± 0.01
60	4.00 ± 0.01	4.00 ± 0.01
70	4.00 ± 0.02	4.00 ± 0.01
80	4.00 ± 0.02	4.00 ± 0.03
90	4.00 ± 0.02	4.00 ± 0.02