Supporting Information for

Photophysical Properties of *N*-Methyl and *N*-Acetyl Substituted Alloxazine: A Theoretical Investigation

Huimin Guo[†],^{*}, Xiaolin Ma[†], Zhiwen Lei[†], Yang Qiu[†], Jianzhang Zhao[†], Bernhard

Dick‡

[†] State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.

‡ Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany

KEYWORDS: Photophysics; Alloxazine; Intersystem Crossing; Internal Conversion;

Absorption Spectrum; Emission Spectrum; Flavin.

^{*} Corresponding authors, email: <u>guohm@dlut.edu.cn</u> (H. G.)

Theoretical Methods

Density Functional Theory (DFT) and Time-dependent Density Functional Theory (TD-DFT) based calculations were performed to investigate the photophysical properties of these compounds. Structures of the S₀ states of these compounds were fully optimized with the B3LYP functional with 6-311G(d) basis sets unless specified.¹⁻⁵ Benchmark calculations were also performed for Az and AAz1 at B3LYP/Def2TZVP level.^{6, 7} TD-DFT calculations at the same level of theory were performed to get the fully relaxed S₁ and T₁ structures. All reported structures were verified with frequency calculations to be local minima on the corresponding potential energy surface. These calculations were performed with Gaussian 16.⁸

The transition dipole moments from T_1 to S_0 are evaluated from the quadratic response function⁹⁻¹¹ and the spin-orbit coupling matrix elements are computed at the same level of theory using the effective single-electron approximation in linear response theory with the Dalton program.¹²⁻¹⁴

The absorption, fluorescence and phosphorescence spectra of compounds, together with the radiative and non-radiative decay rate constants were calculated using MOMAP.¹⁵⁻²⁰ The absorption and fluorescence spectra were calculated according to eq-S1 and 2:

$$\sigma(\omega)_{abs} = \frac{4\pi^2 \omega}{3\hbar c} \times \sum_{v_i, v_f} P_{iv_i}(T) \left| \left\langle \Theta_{f, v_f} \middle| \mu_{fi} \middle| \Theta_{i, v_i} \right\rangle \right|^2 \delta \left(\omega - \omega_{f, v_f, i, v_i} \right) \text{ (eq-S1)}$$

$$\sigma(\omega)_{emi} = \frac{4\omega^3}{3\hbar c} \times \sum_{v_i, v_f} P_{iv_i}(T) \left| \left\langle \Theta_{f, v_f} \middle| \mu_{fi} \middle| \Theta_{i, v_i} \right\rangle \right|^2 \delta \left(\omega_{i, v_i, f, v_f} - \omega \right) \text{(eq-S2)}$$

where $P_{iv_i}(T)$ is the Boltzmann population of the vibrational manifolds in the initial state, $\mu_{fi} = \langle \Phi_f | \mu | \Phi_i \rangle$ is the electronic transition dipole moment between the initial state *i* and final state *f* calculated according to the Frank-Condon approximation, v_i/v_f is vibrational quantum number of state i/f, ω is the radiation frequency and $\omega_{i,v_i,f,v_f} = \omega_{f,v_f} - \omega_{i,v_i}$, respectively. The absorption and emission rate constants were calculated as the integration of the spectra.²⁰⁻²³

For the non-radiative decay, applying the second-order perturbation approximation, the rate constants were calculated as:

$$k_{f\leftarrow i} = \frac{2\pi}{\hbar} \sum_{v_i, v_f} P_{iv_i} \left| H'_{fv_f, iv_i} + \sum_{n, v_n} \frac{H'_{fv_f, nv_n} H'_{nv_n, iv_i}}{E_{iv_i} - E_{nv_n}} \right|^2 \times \delta\left(E_{iv_i} - E_{fv_f} \right) \text{ (eq-S3)}$$

where, v_i/v_f is vibrational quantum number of state i/f and H' is the interaction between 2 different Born-Oppenheimer states and calculated as $H'\psi_{iv_i} = H^{NA}\Phi_i(r;Q)\Theta_{iv_i}(Q) + H^{SO}\Phi_i(r;Q)\Theta_{iv_i}(Q)$, where H^{NA} is the non-adiabatic coupling operator, H^{SO} is the spin-orbital coupling operator, r and Q are the electronic and nuclear normal mode coordinates.²⁴

The transition dipole moment for phosphorescence was calculated as eq-S4:

$$\mu_{ST_{\kappa}} = \sum_{k}^{\{singlets\}} \frac{\langle S|\mu| \, {}^{1}k \rangle \langle \, {}^{1}k|H^{SO}|T_{\kappa} \rangle}{{}^{3}E_{T}^{0} - {}^{1}E_{\kappa}^{0}} + \sum_{n}^{\{triplets\}} \sum_{\kappa'=1}^{3} \frac{\langle S|H^{SO}| \, {}^{3}n_{\kappa'} \rangle \langle \, {}^{3}n_{\kappa'}|\mu|T_{\kappa} \rangle}{{}^{1}E_{S}^{0} - {}^{3}E_{n}^{0}} \quad (eq-S4)$$

where κ is the magnetic quantum number, n and k are the intermediate triplet and singlet electronic states, respectively. Applying the Franck-Condon approximation, the phosphorescence spectra were calculated as eq-S5¹⁹:

$$\sigma_{ph}(\omega,T) = \frac{4\omega^3}{3\hbar c^3} \times \sum_{v_i,v_f} P_{iv_i}(T) \left| \left\langle \Theta_{f,v_f} \middle| \mu_{ST} \middle| \Theta_{i,v_i} \right\rangle \right|^2 \delta\left(\omega_{i,v_i,f,v_f} - \omega \right) \text{ (eq-S5)}$$

The radiative decay rate constant was calculated as the integration of the phosphorescence spectra.

The intersystem crossing rate constant can be calculated as:

$$k_{isc} = k_{isc}^{(0)} + k_{isc}^{(1)} + k_{isc}^{(2)}$$
 (eq-S6)

where:

$$k_{isc}^{(0)} = \frac{2\pi}{\hbar} \sum_{v_i, v_f} P_{iv_i} \left| H'_{fv_f, iv_i} \right|^2 \times \delta \left(E_{iv_i} - E_{fv_f} \right) \text{ (eq-S7)}$$

$$k_{isc}^{(1)} = \frac{2\pi}{\hbar} \sum_{v_i, v_f} P_{iv_i} 2Re(H'_{fv_f, iv_i} \sum_{n, v_n} \frac{H'_{fv_f, nv_n} H'_{nv_n, iv_i}}{E_{iv_i} - E_{nv_n}}) \times \delta \left(E_{iv_i} - E_{fv_f} \right) \text{ (eq-S8)}$$

$$k_{isc}^{(2)} = \frac{2\pi}{\hbar} \sum_{v_i, v_f} P_{iv_i} \left| \sum_{n, v_n} \frac{H'_{fv_f, nv_n} H'_{nv_n, iv_i}}{E_{iv_i} - E_{nv_n}} \right|^2 \times \delta \left(E_{iv_i} - E_{fv_f} \right) \text{ (eq-S9)}$$

More details on calculation of these spectra and rate constants can be found in Ref. 15-24.

Natural Transition Orbital (NTO) analysis was performed to understand the electron transitions involved in absorption with Multiwfn and Gaussian 16.^{8, 25} The polarizable continuum model (PCM) was applied to take into account the electrostatic interaction with the solvent.²⁶⁻²⁸

No.	Energy	f ^a	Composition ^b	CI ^c	Character
$S_0 \rightarrow S_1$	3.4254 eV/361.96 nm	0.0842	55→56	0.69357	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.4586 eV/358.48 nm	0.0017	52→56	0.11814	$\pi \rightarrow \pi^*$
-0 -2			53→56	0.69307	$n \rightarrow \pi^*$
$S_0 \rightarrow S_3$	3.9272 eV/315.70 nm	0.2381	54→56	0.67168	$\pi \rightarrow \pi^*$
0 - 3			55→57	0.18574	$n \rightarrow \pi^*$
$S_0 \rightarrow S_4$	4.0849 eV/303.51 nm	0.0001	50→56	0.14401	$\pi \rightarrow \pi^*$
			52→56	0.67067	$n \rightarrow \pi^*$
			53→56	0.10483	
$S_0 \rightarrow S_5$	4.8262 eV/256.90 nm	0.0338	49→56	0.12590	$\pi \rightarrow \pi^*$
20 23			51→56	0.64667	$n \rightarrow \pi^*$
			55→57	0.22269	
$S_0 \rightarrow S_6$	4.9392 eV/251.02 nm	0.0000	50→56	0.49943	$\pi \rightarrow \pi^*$
			52→56	0.12683	$n \rightarrow \pi^*$
			$53 \rightarrow 57$	0.45775	
$S_0 \rightarrow S_7$	4.9990 eV/248.02 nm	0.0000	48→56	0.17662	$\pi \rightarrow \pi^*$
20 27		0.0000	50→56	0.45534	$n \rightarrow \pi^*$
			52→57	0.15259	
			53→57	0.47402	
$S_0 \rightarrow S_{\circ}$	5 0343 eV/246 28 nm	0 4939	49→56	0.37870	$\pi \rightarrow \pi^*$
~0 ~08	5.00 10 0 1/2 10.20 mil	0.1707	51→56	0.23143	$n \rightarrow \pi^*$
			54→56	0 11624	11 70
			54→57	0.21190	
			55→57	0 47419	
$S_0 \rightarrow S_0$	5 1331 eV/241 54 nm	0.0000	48→56	0.66816	$\pi \rightarrow \pi^*$
20 29		0.0000	53→57	0.18788	$n \rightarrow \pi^*$
$S_0 \rightarrow S_{10}$	5 2824 eV/234 71 nm	0.2835	49→56	0 27255	$\pi \rightarrow \pi^*$
20 210		0.2000	51→56	0.13267	$n \rightarrow \pi^*$
			54→57	0 47179	
			55→57	0.37221	
			55→58	0.13761	
$S_0 \rightarrow S_{11}$	5.4229 eV/228.63 nm	0.4391	49→56	0.49042	$\pi \rightarrow \pi^*$
20 211		01.071	54→56	0.12126	$n \rightarrow \pi^*$
			54→57	0.34128	
			55→57	0.17914	
			55→58	0.26725	
$S_0 \rightarrow S_{12}$	5.7341 eV/216.22 nm	0.0001	50→56	0.10283	$\pi \rightarrow \pi^*$
0 12			52→57	0.66139	$n \rightarrow \pi^*$
			$53 \rightarrow 57$	0.13585	
$S_0 \rightarrow S_{13}$	5.9634 eV/207.91 nm	0.1274	47→56	0.11716	$\pi \rightarrow \pi^*$
0 15			54→57	0.25157	$n \rightarrow \pi^*$
			54→58	0.10061	
			54→59	0.17777	
			55→58	0.58308	
$S_0 \rightarrow S_{14}$	6.0553 eV/204.75 nm	0.0004	50→57	0.16242	$\pi \rightarrow \pi^*$
0 14			52→57	0.10823	$n \rightarrow \pi^*$
			52→59	0.16149	
			53→58	0.62813	
			53→59	0.14678	
$S_0 \rightarrow S_{15}$	6.2259 eV/199.14 nm	0.0010	50→57	0.29150	$\pi \rightarrow \pi^*$
~15			52→58	0.32192	$n \rightarrow \pi^*$
			52→59	0.11116	
			53→58	0.23136	
			53→59	0.45758	
$S_0 \rightarrow S_{16}$	6.2289 eV/199.05 nm	0.1149	51→57	0.17187	$\pi \rightarrow \pi^*$
~10			55→59	0.64760	$n \rightarrow \pi^*$

Table S1. Electronic transitions involved in the excitation of Az in visible light region.

S5

$S_0 \rightarrow S_{17}$	6.3289 eV/195.90 nm	0.0146	47→56	0.11789	$\pi \rightarrow \pi^*$
			51→57	0.65773	n→π [*]
			54→58	0.10568	
			55→59	0.14091	
$S_0 \rightarrow S_{18}$	6.3513 eV/195.21 nm	0.2455	47→56	0.23526	$\pi \rightarrow \pi^*$
			49→57	0.19846	$n \rightarrow \pi^*$
			51→57	0.13639	
			54→58	0.55930	
			55→58	0.14735	
			55→59	0.14771	
			55→60	0.11166	
$S_0 \rightarrow S_{19}$	6.4828 eV/191.25 nm	0.0005	50→57	0.56095	$\pi \rightarrow \pi_{\pm}^{*}$
			53→59	0.37036	$n \rightarrow \pi_{\pm}^{*}$
$S_0 \rightarrow S_{20}$	6.6086 eV/187.61 nm	0.0009	46→56	0.67435	$\pi \rightarrow \pi_{\pi}^{*}$
			53→59	0.14710	n→π_ື
$S_0 \rightarrow T_1$	2.5212 eV/491.76 nm	0.0000	54→56	0.25642	$\pi \rightarrow \pi_{\tilde{y}}$
			54→58	0.10212	n→π [*]
			55→56	0.62402	
			55→57	0.14191	*
$S_0 \rightarrow T_2$	2.8926 eV/428.63 nm	0.0000	54→56	0.62172	$\pi \rightarrow \pi_{*}^{}$
			55→56	0.29624	$n \rightarrow \pi_{*}$
$S_0 \rightarrow T_3$	2.9682 eV/417.71 nm	0.0000	52→56	0.23021	$\pi \rightarrow \pi_{*}$
			53→56	0.64965	$n \rightarrow \pi_{*}$
$S_0 \rightarrow T_4$	3.7396 eV/331.54 nm	0.0000	48→56	0.10728	$\pi \rightarrow \pi_{*}$
			50→56	0.18638	n→π
			52→56	0.59937	
			53→56	0.22494	*
$S_0 \rightarrow T_5$	3.8940 eV/318.40 nm	0.0000	51→56	0.10904	$\pi \rightarrow \pi_{*}$
			54→56	0.16379	n→π
			54→57	0.13378	
			55→56	0.10803	
			55→57	0 63844	

Figure S1. Contour plots of wavefunction of states of Az involved in absorption in visible light region. The C, O, N and H are in gray, red, blue and white, respectively. The isovalue is ±0.02 a.u.

No.	Energy	f ^a	Composition ^b	CI ^c	Characte
$S_0 \rightarrow S_1$	3.4121 eV/363.36 nm	0.0707	64→67	0.12313	$\pi \rightarrow \pi^*$
			66→67	0.68101	$n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.4405 eV/360.36 nm	0.0052	64→67	0.68184	$\pi \rightarrow \pi^*$
			66→67	0.13114	$n \rightarrow \pi^*$
$S_0 \rightarrow S_3$	3.9028 eV/317.68 nm	0.2356	65→67	0.66754	$\pi \rightarrow \pi^*$
0 5			66→68	0.17660	$n \rightarrow \pi^*$
$S_0 \rightarrow S_4$	4.0630 eV/305.15 nm	0.0009	61→67	0.18013	$\pi \rightarrow \pi^*$
~0 ~4			63→67	0.65556	$n \rightarrow \pi^*$
So→Se	4 6598 eV/266 07 nm	0.0027	61→69	0 16824	$\pi \rightarrow \pi^*$
20 23		0.0027	63→69	0.10531	$n \rightarrow \pi^*$
			65→69	0.15049	
			66→68	0.19022	
			66→69	0.61642	
S	4 7605 eV/260 44 nm	0.0288	$61 \rightarrow 67$	0.38604	π ,
50 ,56	4.7003 C V/200.44 IIII	0.0200	$62 \rightarrow 67$	0.30004	$n \rightarrow \pi^*$
			$62 \rightarrow 07$	0.49011	n→n
			$03 \rightarrow 07$	0.10907	
			$00 \rightarrow 08$	0.22032	
0.0	4 9742 - 11/254 27	0.0106	$00 \rightarrow 09$	0.10105	*
$\mathbf{S}_0 \rightarrow \mathbf{S}_7$	4.8/42 ev/254.5/ nm	0.0186	$60 \rightarrow 67$	0.22247	$\pi \rightarrow \pi_*$
			$61 \rightarrow 6/$	0.48502	n→π
			62→67	0.36631	
			63→67	0.14575	
			64→68	0.11024	
			65→68	0.10348	
			66→68	0.14529	*
$S_0 \rightarrow S_8$	4.9218 eV/251.91 nm	0.0041	58→67	0.16088	$\pi \rightarrow \pi_{*}$
			61→67	0.12510	n→π
			64→68	0.64414	×.
$S_0 \rightarrow S_9$	5.0037 eV/247.78 nm	0.0470	59→69	0.16965	$\pi \rightarrow \pi_{}^{*}$
			60→67	0.14756	n→π [*]
			61→69	0.32151	
			62→69	0.10951	
			63→69	0.30860	
			64→69	0.36317	
			66→68	0.17351	
			66→69	0.16571	
$S_0 \rightarrow S_{10}$	5.0131 eV/247.32 nm	0.3033	59→67	0.13792	$\pi \rightarrow \pi^*$
0 10			60→67	0.38761	$n \rightarrow \pi^*$
			61→69	0.10549	
			62→67	0.26200	
			63→69	0.12308	
			64→69	0.12712	
			65→68	0 20444	
			66→68	0.32610	
			66→69	0.16571	
Sa->S	5 1036 eV/212 03 nm	0 1/27	58 <u>~67</u>	0.10371	<i>π_→</i> π [*]
10 'S11	5.1050 C ¥/242.75 IIII	0.142/	50 -07 50 <u>-</u> 67	0.33711	$n \rightarrow \pi^*$
			59-07 60-567	0.31002	11 → 1
			$00 \rightarrow 0/$	0.37793	
			$04 \rightarrow 08$	0.10352	
		0 1 407	$00 \rightarrow 08$	0.2338/	*
$s_0 \rightarrow s_{12}$	5.1551 eV/240.51 nm	0.1407	58→67	0.56107	$\pi \rightarrow \pi_*$
			59→67	0.11570	n→π
			60→6 ⁷ /	0.25042	
			61→67	0.14304	
			66→68	0 21933	

$S_0 \rightarrow S_{13}$	5.2513 eV/236.10 nm	0.1850	$59 \rightarrow 67$ $62 \rightarrow 67$ $65 \rightarrow 68$ $66 \rightarrow 68$	0.33719 0.12399 0.47193 0.26723	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
$S_0 \rightarrow S_{14}$	5.3946 eV/229.83 nm	0.2914	$66 \rightarrow 70$ $59 \rightarrow 67$ $60 \rightarrow 67$ $65 \rightarrow 67$ $65 \rightarrow 68$	0.13629 0.41935 0.17170 0.10072 0.33576	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
$S_0 \rightarrow S_{15}$	5.4348 eV/228.13 nm	0.0967	$65 \rightarrow 69$ $66 \rightarrow 68$ $66 \rightarrow 70$ $59 \rightarrow 67$ $64 \rightarrow 69$ $65 \rightarrow 60$	0.27067 0.15528 0.18144 0.20590 0.21080	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
$S_0 \rightarrow S_{16}$	5.4883 eV/225.90 nm	0.0008	$65 \rightarrow 69$ $66 \rightarrow 69$ $66 \rightarrow 70$ $61 \rightarrow 69$ $63 \rightarrow 68$ (2) = 60	0.58517 0.12806 0.15009 0.24678 0.11208	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
$S_0 \rightarrow S_{17}$	5.6833 eV/218.15 nm	0.0004	$63 \rightarrow 69$ $64 \rightarrow 69$ $65 \rightarrow 69$ $61 \rightarrow 68$ $63 \rightarrow 68$	$\begin{array}{c} 0.28800\\ 0.51985\\ 0.18363\\ 0.10578\\ 0.64299\end{array}$	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
$S_0 \rightarrow S_{18}$	5.9370 eV/208.83 nm	0.0668	$63 \rightarrow 69$ $57 \rightarrow 67$ $65 \rightarrow 68$ $65 \rightarrow 71$ $66 \rightarrow 70$	0.14145 0.11613 0.20593 0.17004 0.59528	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
$S_0 \rightarrow S_{19}$	6.0319 eV/205.55 nm	0.0008	$66 \rightarrow 71$ $60 \rightarrow 68$ $60 \rightarrow 69$ $61 \rightarrow 68$ $61 \rightarrow 69$ $63 \rightarrow 69$	0.11436 0.10416 0.11573 0.15245 0.13737 0.22399	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
$S_0 \rightarrow S_{20}$	6.0808 eV/203.90 nm	0.0006	$63 \rightarrow 71$ $64 \rightarrow 70$ $64 \rightarrow 71$ $59 \rightarrow 69$ $60 \rightarrow 69$ $61 \rightarrow 69$ $62 \rightarrow 69$	$\begin{array}{c} 0.15806 \\ 0.53247 \\ 0.12521 \\ 0.15008 \\ 0.21026 \\ 0.29091 \\ 0.16412 \end{array}$	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
$S_0 \rightarrow T_1$	2.5224 eV/491.54 nm	0.0000	$63 \rightarrow 68$ $63 \rightarrow 69$ $64 \rightarrow 70$ $65 \rightarrow 67$ $65 \rightarrow 70$ $66 \rightarrow 67$	0.10156 0.40550 0.32841 0.27304 0.10117 0.61580	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
$S_0 \rightarrow T_2$	2.8848 eV/429.78 nm	0.0000	$\begin{array}{c} 66 \rightarrow 68 \\ 65 \rightarrow 67 \end{array}$	$0.14080 \\ 0.61495$	$\pi \rightarrow \pi^*_*$
$S_0 \rightarrow T_3$	2.9503 eV/420.24 nm	0.0000	$66 \rightarrow 67$ $61 \rightarrow 67$ $63 \rightarrow 67$	0.31168 0.11309 0.14144	$n \rightarrow \pi^{}$ $\pi \rightarrow \pi^{*}$ $n \rightarrow \pi^{*}$
$S_0 \rightarrow T_4$	3.7344 eV/332.00 nm	0.0000	$64 \rightarrow 67$ $60 \rightarrow 67$ $61 \rightarrow 67$ $63 \rightarrow 67$	0.66190 0.13353 0.20967 0.58894	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$

			64→67	0.17594	
$S_0 \rightarrow T_5$	3.8813 eV/319.44 nm	0.0000	65→67	0.16064	$\pi \rightarrow \pi^*$
			65→68	0.13144	$n \rightarrow \pi^*$
			66→67	0.10996	
			66→68	0.62775	
			66→69	0.11992	

Figure S2. Contour plots of wavefunction of states of AAz1 involved in absorption in visible light region. The C, O, N and H are in gray, red, blue and white, respectively. The isovalue is ±0.02 a.u.

No.	Energy	f ^a	Composition ^b	CI ^c	Character
$S_0 \rightarrow S_1$	3.4004 eV/364.62 nm	0.0757	<u>66→67</u>	0.69374	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.4582 eV/358.53 nm	0.0017	64→67	0 69470	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
$\mathbf{S}_0 \mathbf{S}_2$	3.4502 eV/350.55 nm	0.0017	65 \67	0.67110	$\pi \gamma \pi^*$
$\mathbf{S}_0 \rightarrow \mathbf{S}_3$	3.9003 ev/31/.87 IIII	0.2714	$03 \rightarrow 07$	0.07110	$n \rightarrow n$
S. S.	4 1161 eV/301 21 nm	0.0002	59→67	0.13749	$\pi \rightarrow \pi^*$
50 , 54	4.1101 CV/301.21 IIII	0.0002	$62 \rightarrow 67$	0.30330	$n \rightarrow \pi^*$
			$63 \rightarrow 67$	0.57550	11 <i>/ n</i>
$S_0 \rightarrow S_7$	4 5874 eV/270 27 nm	0.0027	$62 \rightarrow 67$	0.56603	$\pi \rightarrow \pi^*$
00 ,05	4.5074 C 77270.27 IIII	0.0027	$63 \rightarrow 67$	0.39676	$n \rightarrow \pi^*$
$S_0 \rightarrow S_6$	4.8330 eV/256.54 nm	0.0275	60→67	0.13346	$\pi \rightarrow \pi^*$
~0 ~0			61→67	0.63748	$n \rightarrow \pi^*$
			66→68	0.20103	
$S_0 \rightarrow S_7$	4.9671 eV/249.61 nm	0.0035	58→67	0.12272	$\pi \rightarrow \pi^*$
0 1			61→69	0.11932	$n \rightarrow \pi^*$
			62→69	0.19438	
			63→69	0.26507	
			64→68	0.56219	
$S_0 \rightarrow S_8$	4.9759 eV/249.17 nm	0.0006	59→69	0.11810	$\pi \rightarrow \pi^*$
			61→69	0.17791	$n \rightarrow \pi^*$
			62→69	0.29849	
			63→68	0.10354	
			63→69	0.37366	
			64→68	0.35155	
			64→69	0.21709	
			66→69	0.15681	*
$S_0 \rightarrow S_9$	5.0166 eV/247.15 nm	0.5879	59→67	0.11838	$\pi \rightarrow \pi_{*}$
			$60 \rightarrow 6/$	0.32258	n→π
			$61 \rightarrow 6/$	0.20719	
			$03 \rightarrow 0/$	0.12432	
			$03 \rightarrow 08$	0.19614	
Sans	5 0769 eV/244 21 nm	0.0074	$63 \rightarrow 69$	0.49092	π *
3_0 3_{10}	J.0707 C V/244.21 IIII	0.0074	65→69	0.13860	$n \rightarrow \pi^*$
			66→69	0.65807	11 <i>/ n</i>
$S_0 \rightarrow S_{11}$	5.1015 eV/243.03 nm	0.0000	58→67	0.53569	$\pi \rightarrow \pi^*$
20 211		0.0000	59→67	0.39739	$n \rightarrow \pi^*$
			60→67	0.12263	
			64→68	0.12726	
$S_0 \rightarrow S_{12}$	5.2307 eV/237.03 nm	0.1436	58→67	0.29277	$\pi \rightarrow \pi^*$
			59→67	0.27799	n→π [*]
			60→67	0.31028	
			65→68	0.34323	
			66→68	0.25993	*
$S_0 \rightarrow S_{13}$	5.2830 eV/234.69 nm	0.1251	58→67	0.27853	$\pi \rightarrow \pi_{*}$
			59→67	0.42069	n→π
			$61 \rightarrow 6^{7}$	0.15097	
			65→68	0.34787	
			$00 \rightarrow 08$	0.22/96	
66	5 30/6 aV/220 02 mm	0 4272	$00 \rightarrow /0$	0.10010	~ \ ~ *
$\mathfrak{S}_0 \rightarrow \mathfrak{S}_{14}$	J.J740 C V/227.03 IIII	0.4372	59→07 60 <u>→</u> 67	0.1/439	$n \rightarrow n$
			65→67	0.401/1	$\Pi \rightarrow n$
			65→68	0 33290	
			66→68	0.17194	
			66→70	0.22741	

Table S3. Electronic transitions involved in the excitation of AAz3 in visible light region.

$S_0 \rightarrow S_{15}$	5.5177 eV/224.70 nm	0.0045	62→69	0.36229	$\pi \rightarrow \pi^*$
			64→69	0.58650	n→π [*]
			65→69	0.12073	
$S_0 \rightarrow S_{16}$	5.5745 eV/222.41 nm	0.0002	61→69	0.10343	$\pi \rightarrow \pi^*$
			65→69	0.67257	$n \rightarrow \pi^*$
			66→69	0.13238	
$S_0 \rightarrow S_{17}$	5.7711 eV/214.84 nm	0.0001	59→67	0.12089	$\pi \rightarrow \pi^*$
			62→68	0.38090	$n \rightarrow \pi^*$
			63→68	0.52789	
			64→68	0.11619	
$S_0 \rightarrow S_{18}$	5.8211 eV/212.99 nm	0.0000	61→69	0.63158	$\pi \rightarrow \pi^*$
			62→69	0.14690	$n \rightarrow \pi^*$
			63→69	0.20297	
$S_0 \rightarrow S_{19}$	5.9384 eV/208.78 nm	0.0771	57→67	0.12016	$\pi \rightarrow \pi^*$
			65→68	0.21615	n→π [*]
			65→71	0.18167	
			66→70	0.59756	
			66→71	0.10135	
$S_0 \rightarrow S_{20}$	6.0383 eV/205.33 nm	0.0005	59→68	0.10498	$\pi \rightarrow \pi^*$
			61→68	0.12682	n→π [*]
			62→68	0.45949	
			62→69	0.16562	
			63→68	0.26595	
			63→69	0.10931	
			64→70	0.31592	
$S_0 \rightarrow T_1$	2.5038 eV/495.18 nm	0.0000	65→67	0.25026	$\pi \rightarrow \pi^*$
			66→67	0.62592	n→π [*]
			66→68	0.14226	
$S_0 \rightarrow T_2$	2.8832 eV/430.02 nm	0.0000	65→67	0.62606	$\pi \rightarrow \pi_{\pi}^{*}$
			66→67	0.28950	n→π [*]
$S_0 \rightarrow T_3$	2.9622 eV/418.55 nm	0.0000	62→67	0.11267	$\pi \rightarrow \pi^*$
			63→67	0.17322	$n \rightarrow \pi^*$
			64→67	0.65688	
$S_0 \rightarrow T_4$	3.7745 eV/328.47 nm	0.0000	59→67	0.16890	$\pi \rightarrow \pi_{\pi}^{*}$
			62→67	0.36651	n→π [*]
			63→67	0.48851	
			64→67	0.20573	
$S_0 \rightarrow T_5$	3.8782 eV/319.69 nm	0.0000	65→67	0.15933	$\pi \rightarrow \pi_{\pi}^{*}$
			65→68	0.14437	$n \rightarrow \pi^*$
			66→67	0.11309	
			66→68	0.63066	

Figure S3. Contour plots of wavefunction of states of AAz3 involved in absorption in visible light

Table S	ght region.				
No.	Energy	f ^a	Composition ^b	CI ^c	Character
$S_0 \rightarrow S_1$	3.3870 eV/366.06 nm	0.0671	77→78	0.69303	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.4297 eV/361.51 nm	0.0017	75→78	0.69291	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
$S_0 \rightarrow S_3$	3.8779 eV/319.72 nm	0.2657	76→78	0.66946	$\pi \rightarrow \pi^*$
20 23			77→79	0.14645	$n \rightarrow \pi^*$
			77→80	0.10979	
$S_0 \rightarrow S_4$	4.0997 eV/302.42 nm	0.0007	71→78	0.10672	$\pi \rightarrow \pi^*$
			72→78	0.11810	$n \rightarrow \pi^*$
			73→78	0.30039	
			74→78	0.59091	
$S_0 \rightarrow S_5$	4.5228 eV/274.13 nm	0.0010	73→78	0.59607	$\pi \rightarrow \pi^*$
			74→78	0.33949	$n \rightarrow \pi^*$
$S_0 \rightarrow S_6$	4.6300 eV/267.78 nm	0.0007	76→80	0.11415	$\pi \rightarrow \pi^*$
			77→79	0.39166	$n \rightarrow \pi^*$
			77→80	0.47005	
			77→81	0.21968	
$S_0 \rightarrow S_7$	4.8231 eV/257.06 nm	0.0446	70→78	0.14029	$\pi \rightarrow \pi_{\pm}^{*}$
			71→78	0.12206	n→π [*]
			72→78	0.60165	
			77→79	0.17993	
			77→80	0.17290	*
$S_0 \rightarrow S_8$	4.8965 eV/253.21 nm	0.0764	<u>68</u> →78	0.17052	$\pi \rightarrow \pi_*$
			71→78	0.51095	n→π
			72→78	0.20063	
			73→78	0.13509	
			75→79	0.25348	
			$77 \rightarrow 79$	0.13108	
n n	4.0102 1/252.00	0.0600	//→80	0.15499	*
$S_0 \rightarrow S_9$	4.9183 eV/252.09 nm	0.0682	$/1 \rightarrow /8$	0.21466	$\pi \rightarrow \pi_*$
			$75 \rightarrow 79$	0.52324	n→π
			$73 \rightarrow 80$ 76 370	0.27912	
			$70 \rightarrow 79$	0.10/17	
S-S-	4 9363 eV/251 17 nm	0.0003	$71 \rightarrow 81$	0.17038	π
D ₀ , D ₁₀	4.9505 C 7/251.17 IIII	0.0005	$73 \rightarrow 79$	0.19743	$n \rightarrow \pi^*$
			$73 \rightarrow 80$	0.25317	11 <i>/ n</i>
			$73 \rightarrow 81$	0.26928	
			$74 \rightarrow 79$	0.12064	
			74→80	0.16399	
			75→79	0.11110	
			75→80	0.39196	
			77→80	0.10751	
$S_0 \rightarrow S_{11}$	4.9981 eV/248.06 nm	0.0014	71→79	0.18106	$\pi \rightarrow \pi^*$
0 11			71→80	0.23038	$n \rightarrow \pi^*$
			72→81	0.11828	
			73→79	0.12648	
			73→80	0.19936	
			73→81	0.27859	
			74→79	0.10364	
			74→80	0.13019	
			74→81	0.18865	
			75→80	0.14587	
			75→81	0.27062	
			77→80	0.17423	

region. The C, O, N and H are in gray, red, blue and white, respectively. The isovalue is ± 0.02 a.u.

$S_0 \rightarrow S_{12}$	5.0385 eV/246.07 nm	0.4347	$\begin{array}{c} 68 \rightarrow 78 \\ 70 \rightarrow 78 \\ 71 \rightarrow 78 \\ \hline \end{array}$	0.24664 0.31953 0.26490	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$
			72→78	0.19536	
			$75 \rightarrow 79$	0.11688	
			$/6 \rightarrow /9$	0.11291	
			$//\rightarrow/9$	0.31606	
a a	5 1 490 34/2 40 9 4	0.0001	$//\rightarrow 80$	0.23284	*
$S_0 \rightarrow S_{13}$	5.1480 eV/240.84 nm	0.0921	$68 \rightarrow 78$	0.30310	$\pi \rightarrow \pi$
			$09 \rightarrow 78$	0.17902	n→n
			$70 \rightarrow 78$	0.10309	
			$71 \rightarrow 78$ $76 \rightarrow 80$	0.18550	
			70 ×80 77→80	0.12010	
			77→81	0.22330	
$S_0 \rightarrow S_{14}$	5 1595 eV/240 30 nm	0.0845	$68 \rightarrow 78$	0.35968	$\pi \rightarrow \pi^*$
50 514	5.1575 C V/2 10.50 IIII	0.0015	$69 \rightarrow 78$	0.16994	$n \rightarrow \pi^*$
			$71 \rightarrow 78$	0.18790	
			77→79	0.20088	
			77→81	0.46414	
$S_0 \rightarrow S_{15}$	5.2034 eV/238.28 nm	0.1215	68→78	0.29187	$\pi \rightarrow \pi^*$
0 15			70→78	0.32097	$n \rightarrow \pi^*$
			76→79	0.37849	
			76→80	0.22463	
			77→79	0.18602	
			77→80	0.14033	
			77→82	0.10729	
$S_0 \rightarrow S_{16}$	5.2890 eV/234.42 nm	0.0361	68→78	0.18665	$\pi \rightarrow \pi^*$
			69→78	0.56549	n→π [*]
			70→78	0.10726	
			72→78	0.14221	
			76→79	0.21579	
			76→80	0.10063	*
$S_0 \rightarrow S_{17}$	5.3252 eV/232.83 nm	0.0167	70→78	0.12236	$\pi \rightarrow \pi_{*}$
			76→79	0.41037	n→π
			76→80	0.49553	
0 0	5 2000 1/220 12	0.2565	$7/\rightarrow 79$	0.11319	*
$S_0 \rightarrow S_{18}$	5.3808 eV/230.42 nm	0.3565	$69 \rightarrow /8$	0.23612	$\pi \rightarrow \pi$
			$70 \rightarrow 78$	0.43000	n→π
			$76 \rightarrow 70$	0.10740	
			$70 \rightarrow 79$ $76 \rightarrow 80$	0.10303	
			$70 \rightarrow 30$ $77 \rightarrow 79$	0.31424	
			77→80	0.11134	
			$77 \rightarrow 82$	0 19438	
			77→83	0.10321	
$S_0 \rightarrow S_{10}$	5.4120 eV/229.09 nm	0.0059	71→81	0.13047	$\pi \rightarrow \pi^*$
20 219			73→80	0.13730	$n \rightarrow \pi^*$
			74→79	0.24723	
			74→80	0.30936	
			75→79	0.28368	
			75→80	0.41320	
$S_0 \rightarrow S_{20}$	5.6650 eV/218.86 nm	0.0000	72→80	0.11828	$\pi \rightarrow \pi^{*}$
			74→81	0.17499	$n \rightarrow \pi^*$
			75→81	0.26956	
			76→81	0.58030	ىك
$S_0 \rightarrow T_1$	2.5039 eV/495.16 nm	0.0000	76→78	0.26468	$\pi \rightarrow \pi^{}$

			77→78	0.61925	n→π [*]
			77→79	0.11855	
$S_0 \rightarrow T_2$	2.8743 eV/431.36 nm	0.0000	76→78	0.62039	$\pi \rightarrow \pi^*$
			77→78	0.30270	$n \rightarrow \pi^*$
$S_0 \rightarrow T_3$	2.9390 eV/421.86 nm	0.0000	73→78	0.13105	$\pi \rightarrow \pi^*$
			75→78	0.66190	n→π [*]
$S_0 \rightarrow T_4$	3.7694 eV/328.93 nm	0.0000	69→78	0.13202	$\pi \rightarrow \pi^*$
			71→78	0.12464	$n \rightarrow \pi^*$
			72→78	0.12421	
			73→78	0.27941	
			74→78	0.53616	
			75→78	0.16110	
$S_0 \rightarrow T_5$	3.8661 Ev/320.70 nm	0.0000	76→78	0.15679	$\pi \rightarrow \pi^*$
			76→79	0.11613	n→π [*]
			77→78	0.11426	
			77→79	0.51521	
			77→80	0.36897	

Figure S4. Contour plots of wavefunction of states of AAz13 involved in absorption in visible light region. The C, O, N and H are in gray, red, blue and white, respectively. The isovalue is ±0.02 a.u.

Table	S5.	Electronic	transitions	involved	l in the	excitation	of A	Az13-1	in	visible	light	region

No.	Energy	f ^a	Composition ^b	CI ^c	Character
$S_0 \rightarrow S_1$	3.3872 eV/366.04 nm	0.0637	$75 \rightarrow 78$	0.11370	$\pi \rightarrow \pi^*$
			$77 \rightarrow 78$	0.68306	$n \rightarrow \pi^*$
$S_0 \rightarrow S_2$	3.4305 eV/361.41 nm	0.0049	$75 \rightarrow 78$	0.68130	$\pi \rightarrow \pi^*$
			$77 \rightarrow 78$	0.12338	n→π [*]
$S_0 \rightarrow S_3$	3.8793 eV/319.61 nm	0.2656	$76 \rightarrow 78$	0.66628	$\pi \rightarrow \pi^*$
			$77 \rightarrow 79$	0.15131	$n \rightarrow \pi^*$
			$77 \rightarrow 80$	0.10369	
$S_0 \rightarrow S_4$	4.1014 eV/302.30 nm	0.0003	$69 \rightarrow 78$	0.10330	$\pi \rightarrow \pi^*$
			$72 \rightarrow 78$	0.18826	$n \rightarrow \pi^*$
			$74 \rightarrow 78$	0.64825	
$S_0 \rightarrow S_5$	4.5703 eV/271.28 nm	0.0018	$72 \rightarrow 78$	0.10046	$\pi \rightarrow \pi^*$
			$73 \rightarrow 78$	0.67996	$n \rightarrow \pi^*$
			$74 \rightarrow 78$	0.10245	
$S_0 \rightarrow S_6$	4.6330 eV/267.61 nm	0.0046	$76 \rightarrow 80$	0.12063	$\pi \rightarrow \pi^*$
			$77 \rightarrow 79$	0.40719	$n \rightarrow \pi^*$
			$77 \rightarrow 80$	0.45163	
			$77 \rightarrow 81$	0.22058	
$S_0 \rightarrow S_7$	4.7147 eV/262.97 nm	0.0176	$71 \rightarrow 78$	0.13530	$\pi \rightarrow \pi^*$
			$72 \rightarrow 78$	0.60038	n→π [*]

			$74 \rightarrow 78$	0.19323	
			$77 \rightarrow 79$	0.14701	
			$77 \rightarrow 80$	0.18471	
$S_0 \rightarrow S_8$	4.8993 eV/253.07 nm	0.0037	$68 \rightarrow 78$	0.13766	$\pi \rightarrow \pi^*$
			$73 \rightarrow 80$	0.12536	$n \rightarrow \pi^*$
			$75 \rightarrow 79$	0.59402	
			$75 \rightarrow 80$	0.16856	
$S_0 \rightarrow S_9$	4.9341 eV/251.28 nm	0.0070	$71 \rightarrow 78$	0.11262	$\pi \rightarrow \pi^*$
0 2			$71 \rightarrow 81$	0.15031	$n \rightarrow \pi^*$
			$72 \rightarrow 79$	0.11554	
			$72 \rightarrow 80$	0.11226	
			$73 \rightarrow 79$	0.18242	
			$73 \rightarrow 80$	0.25640	
			$73 \rightarrow 81$	0.25246	
			$74 \rightarrow 81$	0.13847	
			$75 \rightarrow 80$	0 41578	
			$77 \rightarrow 80$	0 15850	
$S_0 \rightarrow S_{10}$	4 9781 eV/249 06 nm	0 1207	$68 \rightarrow 78$	0 14793	$\pi \rightarrow \pi^*$
50 510		0.1207	$71 \rightarrow 78$	0 55584	$n \rightarrow \pi^*$
			$72 \rightarrow 78$	0.21250	
			$72 \rightarrow 79$	0.20425	
			$76 \rightarrow 80$	0.12377	
			$70 \rightarrow 00$ $77 \rightarrow 79$	0.12377	
			$77 \rightarrow 80$	0.12234	
SS	5 0108 eV/247 44 nm	0 1770	$70 \rightarrow 78$	0.12234	π*
D ⁰ , D ¹¹	5.0108 C V/247.44 IIII	0.1770	$70 \rightarrow 78$ $71 \rightarrow 78$	0.11250	$n \rightarrow \pi^*$
			$71 \rightarrow 70$	0.11230	11 / 11
			$71 \rightarrow 80$	0.11520	
			$71 \rightarrow 80$ $72 \rightarrow 81$	0.13333	
			$72 \rightarrow 81$ $72 \rightarrow 80$	0.15727	
			$73 \rightarrow 80$	0.10331	
			$73 \rightarrow 81$ $74 \rightarrow 70$	0.25577	
			$74 \rightarrow 79$	0.12904	
			$74 \rightarrow 80$ $75 \rightarrow 80$	0.10104	
			$73 \rightarrow 80$	0.19/10	
			$75 \rightarrow 81$	0.23008	
C . C	5 0222 - 1/246 82 mm	0 2292	$// \rightarrow /9$	0.28883	*
$S_0 \rightarrow S_{12}$	5.0233 eV/246.82 nm	0.3383	$68 \rightarrow /8$	0.18405	$\pi \rightarrow \pi$
			$70 \rightarrow 78$	0.27732	$\Pi \rightarrow \pi$
			$/1 \rightarrow /8$	0.14120	
			$73 \rightarrow 80$	0.13934	
			$73 \rightarrow 81$	0.21011	
			$74 \rightarrow 80$	0.10036	
			$75 \rightarrow 79$	0.12016	
			$/5 \rightarrow 81$	0.14862	
			$77 \rightarrow 79$	0.25033	
a a	5 1040 31/41 46	0.0070	$77 \rightarrow 80$	0.29919	*
$S_0 \rightarrow S_{13}$	5.1348 eV/41.46 nm	0.0272	$68 \rightarrow 78$	0.24458	$\pi \rightarrow \pi_{*}$
			$76 \rightarrow 80$	0.12515	n→π
			$7/6 \rightarrow 81$	0.10097	
			$1/7 \rightarrow 80$	0.25045	
a a		0.1000	$1/7 \rightarrow 81$	0.54908	*
$S_0 \rightarrow S_{14}$	5.1518 eV/240.66 nm	0.1380	$68 \rightarrow 78$	0.48239	$\pi \rightarrow \pi_{*}$
			$69 \rightarrow 78$	0.17365	n→π
			$7/1 \rightarrow 78$	0.19625	
			$777 \rightarrow 79$	0.20262	
~ ~		0	$77 \rightarrow 81$	0.32070	*
$S_0 \rightarrow S_{15}$	5.2344 eV/236.87 nm	0.0960	$68 \rightarrow 78$	0.11202	$\pi \rightarrow \pi$

			$69 \rightarrow 78$	0.29226	$n \rightarrow \pi^*$
			$70 \rightarrow 78$	0.25360	
			$71 \rightarrow 78$	0.16708	
			$76 \rightarrow 79$	0 42666	
			$76 \rightarrow 80$	0.18359	
			$70 \rightarrow 00$ $77 \rightarrow 79$	0.10335	
			77×80	0.14415	
			$77 \rightarrow 80$	0.11234	
0.0	5 2700 - 11/224 82	0.0210	$77 \rightarrow 62$	0.15050	*
$S_0 \rightarrow S_{16}$	5.2799 eV/254.82 IIII	0.0510	$08 \rightarrow 78$	0.27052	$\pi \rightarrow \pi_*$
			$69 \rightarrow 78$	0.56447	n→π
			$12 \rightarrow 18$	0.11608	
			$7/4 \rightarrow 7/9$	0.10942	
			$76 \rightarrow 79$	0.14591	*
$S_0 \rightarrow S_{17}$	5.3283 eV/232.69 nm	0.0284	$70 \rightarrow 78$	0.18859	$\pi \rightarrow \pi_{*}$
			$75 \rightarrow 79$	0.11249	$n \rightarrow \pi$
			$75 \rightarrow 80$	0.16006	
			$76 \rightarrow 79$	0.35783	
			$76 \rightarrow 80$	0.50497	
			$77 \rightarrow 79$	0.12590	
$S_0 \rightarrow S_{18}$	5.3861 eV/230.19 nm	0.3461	$70 \rightarrow 78$	0.49111	$\pi \rightarrow \pi^*$
0 10			$71 \rightarrow 78$	0.13715	$n \rightarrow \pi^*$
			$76 \rightarrow 78$	0.10577	
			$76 \rightarrow 79$	0 15266	
			$76 \rightarrow 80$	0.31671	
			$70 \rightarrow 80$	0.11891	
			$77 \rightarrow 82$	0.11071	
			$77 \rightarrow 83$	0.10150	
C \C	5 1215 aV/228 56 nm	0.0010	$77 \rightarrow 83$	0.10130	~ \ ~ *
$\mathbf{S}_0 \rightarrow \mathbf{S}_{19}$	5.4245 e v/228.50 IIII	0.0019	$71 \rightarrow 81$	0.10127	$n \rightarrow n$
			$72 \rightarrow 80$	0.10388	$\Pi \rightarrow \pi$
			$72 \rightarrow 81$ $72 \rightarrow 70$	0.10155	
			$73 \rightarrow 79$	0.15555	
			$73 \rightarrow 80$	0.21007	
			$74 \rightarrow 79$	0.20497	
			$74 \rightarrow 80$	0.25694	
			$75 \rightarrow 79$	0.25520	
			$75 \rightarrow 80$	0.41353	
~ ~			$7/6 \rightarrow 80$	0.10484	*
$S_0 \rightarrow S_{20}$	5.6449 eV/219.64 nm	0.0003	$72 \rightarrow 79$	0.10/08	$\pi \rightarrow \pi_{*}$
			$72 \rightarrow 80$	0.20538	n→π
			$73 \rightarrow 81$	0.16570	
			$74 \rightarrow 81$	0.19956	
			$75 \rightarrow 81$	0.52164	
			$76 \rightarrow 81$	0.23823	*
$S_0 \rightarrow T_1$	2.5038 eV/495.18 nm	0	$76 \rightarrow 78$	0.26500	$\pi \rightarrow \pi$
			$77 \rightarrow 78$	0.61888	n→π [™]
			$77 \rightarrow 79$	0.11959	
$S_0 \rightarrow T_2$	2.8766 eV/431.01 nm	0	$76 \rightarrow 78$	0.61996	$\pi \rightarrow \pi^*$
			$77 \rightarrow 78$	0.30317	$n \rightarrow \pi^*$
$S_0 \rightarrow T_3$	2.9391 eV/421.85 nm	0	$72 \rightarrow 78$	0.10570	$\pi \rightarrow \pi^*$
			$74 \rightarrow 78$	0.11111	$n \rightarrow \pi^*$
			$75 \rightarrow 78$	0.66314	
$S_0 \rightarrow T_4$	3.7719 eV/328.70 nm	0	$69 \rightarrow 78$	0.14644	$\pi \rightarrow \pi^*$
			$72 \rightarrow 78$	0.19673	$n \rightarrow \pi^*$
			$74 \rightarrow 78$	0.58814	
			$75 \rightarrow 78$	0.15896	
$S_0 \rightarrow T_5$	3.8653 eV/320.76 nm	0	$76 \rightarrow 78$	0.15593	$\pi \rightarrow \pi^*$
		-	$76 \rightarrow 79$	0.12096	$n \rightarrow \pi^*$

$77 \rightarrow 78$	0.11488	
$77 \rightarrow 79$	0.53040	
$77 \rightarrow 80$	0.34553	

Figure S5. Contour plots of wavefunction of states of AAz13-1 involved in absorption in visible light region. The C, O, N and H are in gray, red, blue and white, respectively. The isovalue is ±0.02 a.u.

No.	Energy	f ^a	Composition ^b	CI ^c	Character
	2 2969 aV/266 09 nm	0.1004	50	0.60417	
$S_0 \rightarrow S_1$	3.3808 e V/300.08 IIII	0.1004	<i>39</i> →00	0.09417	$n \rightarrow n \xrightarrow{11} n$
$\mathbf{S}_0 \rightarrow \mathbf{S}_2$	3.4382 eV/360.61 nm	0.0015	56→60	0.11117	$\pi \rightarrow \pi_*$
G G	20072 1/217 22	0.0054	$5 \rightarrow 60$	0.69423	$n \rightarrow \pi_*$
$S_0 \rightarrow S_3$	3.90/3 eV/31/.32 nm	0.2054	58→60	0.67530	$\pi \rightarrow \pi_*$
a a	4.0.000 11/205 10	0.0001	59→61	0.17158	$n \rightarrow \pi_{*}$
$S_0 \rightarrow S_4$	4.062/ eV/305.18 nm	0.0001	53→60	0.13877	$\pi \rightarrow \pi_{*}$
a a		0.0704	56→60	0.67234	$n \rightarrow \pi_*$
$S_0 \rightarrow S_5$	4./424 eV/261.44 nm	0.0704	54→60	0.24276	$\pi \rightarrow \pi_*$
			55→60	0.54867	n→π
a a	10016 N/050 46	0.0000	59→61	0.35192	*
$S_0 \rightarrow S_6$	4.8916 eV/253.46 nm	0.0000	52→60	0.19142	$\pi \rightarrow \pi_{*}$
			$53 \rightarrow 60$	0.35272	n→π
a a	4.0500 11/250.02	0.1500	$5 \rightarrow 61$	0.55978	*
$S_0 \rightarrow S_7$	4.9590 eV/250.02 nm	0.1523	54→60	0.45982	$\pi \rightarrow \pi_*$
			55→60	0.37754	n→π
			$58 \rightarrow 61$	0.27367	
a a		0.0000	59→61	0.23625	*
$S_0 \rightarrow S_8$	4.9767 eV/249.13 nm	0.0000	53→60	0.57259	$\pi \rightarrow \pi_*$
			56→60	0.10278	n→π
			56→61	0.14821	
a a		0.0001	$5' \rightarrow 61$	0.36168	*
$S_0 \rightarrow S_9$	5.0724 eV/244.43 nm	0.0001	52→60	0.67056	$\pi \rightarrow \pi_{*}$
a a		0.6004	57/→61	0.16425	$n \rightarrow \pi_{*}$
$S_0 \rightarrow S_{10}$	5.1193 eV/242.19 nm	0.6284	54→60	0.26438	$\pi \rightarrow \pi_{*}$
			55→60	0.21831	n→π
			58→60	0.11573	
			58→61	0.29633	
a a		0.4000	59→61	0.50927	*
$S_0 \rightarrow S_{11}$	5.3655 eV/231.08 nm	0.4300	54→60	0.36793	$\pi \rightarrow \pi_{*}$
			58→60	0.10478	n→π
			58→61	0.46594	
			59→61	0.11363	
a a		0.0000	$59 \rightarrow 62$	0.31299	*
$S_0 \rightarrow S_{12}$	5.69/9 eV/21/.60 nm	0.0000	$53 \rightarrow 60$	0.10/1/	$\pi \rightarrow \pi_*$
			$56 \rightarrow 61$	0.66590	n→π
a a	50000 N/210 00	0.1000	$5 \rightarrow 61$	0.13502	*
$S_0 \rightarrow S_{13}$	5.8932 eV/210.38 nm	0.1230	$51 \rightarrow 60$	0.10952	$\pi \rightarrow \pi_{*}$
			$58 \rightarrow 61$	0.27458	n→π
			$58 \rightarrow 63$	0.14819	
a a		0.0007	$59 \rightarrow 62$	0.58908	*
$S_0 \rightarrow S_{14}$	6.0177 eV/206.03 nm	0.0006	$53 \rightarrow 61$	0.12372	$\pi \rightarrow \pi_*$
			$56 \rightarrow 63$	0.14350	n→π
a a	C 1050 N/200 14	0.1106	$5 \rightarrow 62$	0.65/35	*
$S_0 \rightarrow S_{15}$	6.1950 eV/200.14 nm	0.1126	$55 \rightarrow 61$	0.22107	$\pi \rightarrow \pi_*$
a a	C 2057 . 1/100 70	0.0007	$59 \rightarrow 63$	0.64438	$n \rightarrow \pi_*$
$S_0 \rightarrow S_{16}$	6.205/ eV/199./9 nm	0.0007	$53 \rightarrow 61$	0.32994	$\pi \rightarrow \pi_*$
			$53 \rightarrow 64$	0.10126	n→π
			$30 \rightarrow 02$	0.32400	
			$30 \rightarrow 03$	0.15850	
			$5 \rightarrow 02$	0.15085	
C . C	6 2760 aV/107 52 and	0.0700	$3 \rightarrow 03$	0.45032	*
$\mathfrak{s}_0 \rightarrow \mathfrak{s}_{17}$	0.2/09 ev/19/.52 nm	0.0709	$J \rightarrow 0 U$	0.20245	$\pi \rightarrow \pi$
			54→01 55 \61	0.13494	n→π
			$53 \rightarrow 01$	0.26227	
			J0→02	0.30337	

Table S6. Electronic transitions involved in the excitation of AzMe in visible light region.

			59→63	0.10564	
$S_0 \rightarrow S_{18}$	6.3198 eV/196.18 nm	0.1340	51→60	0.12058	$\pi \rightarrow \pi^*$
			54→61	0.25076	$n \rightarrow \pi^*$
			55→61	0.41820	
			58→62	0.42869	
			59→63	0.19610	
$S_0 \rightarrow S_{19}$	6.4690 eV/191.66 nm	0.0006	53→61	0.55065	$\pi \rightarrow \pi^*$
			57→63	0.40084	$n \rightarrow \pi^*$
$S_0 \rightarrow S_{20}$	6.5716 eV/188.67 nm	0.0003	52→61	0.68581	$\pi \rightarrow \pi^* n \rightarrow \pi^*$
$S_0 \rightarrow T_1$	2.5365 eV/488.80 nm	0.0000	58→60	0.27880	$\pi \rightarrow \pi^*$
			58→62	0.10742	$n \rightarrow \pi^*$
			59→60	0.61543	
			59→61	0.14077	
$S_0 \rightarrow T_2$	2.8600 eV/433.51 nm	0.0000	58→60	0.60579	$\pi \rightarrow \pi^*$
			59→60	0.31870	$n \rightarrow \pi^*$
$S_0 \rightarrow T_3$	2.9572 eV/419.26 nm	0.0000	56→60	0.21859	$\pi \rightarrow \pi^*$
			57→60	0.65342	$n \rightarrow \pi^*$
$S_0 \rightarrow T_4$	3.7196 eV/333.33 nm	0.0000	52→60	0.12415	$\pi \rightarrow \pi^*$
			53→60	0.17458	$n \rightarrow \pi^*$
			56→60	0.60473	
			57→60	0.21623	
$S_0 \rightarrow T_5$	3.8641 eV/320.86 nm	0.0000	55→60	0.10225	$\pi \rightarrow \pi^*$
			58→60	0.17798	$n \rightarrow \pi^*$
			59→61	0.64565	

Figure S6. Contour plots of wavefunction of states of AzMe involved in absorption in visible light region. The C, O, N and H are in gray, red, blue and white, respectively. The isovalue is ±0.02 a.u.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Energy	f ^a	Composition ^b	CI ^c	Character
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u>3 3668 aV/368 25 nm</u>	0.0010	70	0.60302	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{S}_0 \mathbf{S}_1$	2.4225 aV/261.10 mm	0.0016	70 71	0.605302	π π π π
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_0 \rightarrow S_2$	3.4333 eV/361.10 mm	0.0010	$00 \rightarrow 1$	0.69320	$\pi \rightarrow \pi \pi \xrightarrow{*} \pi$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_0 \rightarrow S_3$	3.8788 eV/319.65 nm	0.2361	69→71	0.67460	$\pi \rightarrow \pi_{*}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a a	1 00000 XX/202 00	0.0001	$70 \rightarrow 72$	0.17300	$n \rightarrow \pi_{*}$
$\begin{split} & \begin{array}{c} 66 \rightarrow 71 & 0.21108 & n \rightarrow \pi \\ 67 \rightarrow 71 & 0.64150 & \pi \rightarrow \pi^* \\ 67 \rightarrow 71 & 0.64236 & \pi \rightarrow \pi^* \\ 70 \rightarrow 72 & 0.16099 & \pi \rightarrow \pi^* \\ 70 \rightarrow 72 & 0.16099 & \pi \rightarrow \pi^* \\ 70 \rightarrow 72 & 0.16099 & \pi \rightarrow \pi^* \\ 64 \rightarrow 71 & 0.20684 & n \rightarrow \pi^* \\ 65 \rightarrow 71 & 0.20689 & n \rightarrow \pi^* \\ 65 \rightarrow 71 & 0.2673 & n \rightarrow \pi^* \\ 66 \rightarrow 72 & 0.10002 & n \rightarrow \pi^* \\ 68 \rightarrow 72 & 0.10002 & \pi \rightarrow \pi^* \\ 68 \rightarrow 72 & 0.10010 & n \rightarrow \pi^* \\ 68 \rightarrow 72 & 0.10010 & n \rightarrow \pi^* \\ 68 \rightarrow 72 & 0.10010 & n \rightarrow \pi^* \\ 68 \rightarrow 72 & 0.10010 & n \rightarrow \pi^* \\ 68 \rightarrow 72 & 0.10010 & n \rightarrow \pi^* \\ 68 \rightarrow 72 & 0.10010 & n \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.15986 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.1542 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 73 & 0.11661 & 69 \rightarrow 72 & 0.25559 \\ 70 \rightarrow 72 & 0.27084 & \pi \rightarrow \pi^* \\ 66 \rightarrow 73 & 0.11573 & \pi \rightarrow \pi^* \\ 66 \rightarrow 73 & 0.11573 & \pi \rightarrow \pi^* \\ 66 \rightarrow 73 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 & \pi \rightarrow \pi^* \\ 66 \rightarrow 71 & 0.12030 &$	$S_0 \rightarrow S_4$	4.0908 eV/303.08 nm	0.0001	$63 \rightarrow /1$	0.12036	$\pi \rightarrow \pi_{*}$
$\begin{split} & \begin{array}{ccccccccccccccccccccccccccccccccccc$				66→71	0.21108	n→π
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a a		0.0010	$6^{\prime} \rightarrow ^{\prime} 1$	0.64150	*
$\begin{split} & \begin{array}{ccccccccccccccccccccccccccccccccccc$	$S_0 \rightarrow S_5$	4.5/16 eV/2/1.20 nm	0.0018	$66 \rightarrow /1$	0.64236	$\pi \rightarrow \pi_{*}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$6/\rightarrow/1$	0.20684	n→π
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C . C	4 7727 - 11/250 78	0.0747	$/0 \rightarrow /2$	0.16099	*
$\begin{split} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ \\ \\ & \end{array} \\ \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ \\ \\ & \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$S_0 \rightarrow S_6$	4.//2/ev/259./8 nm	0.0747	$62 \rightarrow /1$	0.10102	$\pi \rightarrow \pi$
$\begin{split} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ \\ \\ \\ & \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				$64 \rightarrow /1$	0.20078	$\Pi \rightarrow \pi$
$\begin{split} & S_0 \rightarrow S_7 & 4.9087 \text{ eV}/252.58 \text{ nm} & 0.0214 & 62 \rightarrow 71 & 0.15986 & \pi \rightarrow \pi^* \\ & 67 \rightarrow 72 & 0.29950 \\ & 67 \rightarrow 72 & 0.15186 & \pi \rightarrow \pi^* \\ & 67 \rightarrow 72 & 0.11510 & n \rightarrow \pi^* \\ & 68 \rightarrow 72 & 0.64819 \\ & 70 \rightarrow 72 & 0.10524 & \pi \rightarrow \pi^* \\ & 66 \rightarrow 71 & 0.41542 & \pi \rightarrow \pi^* \\ & 66 \rightarrow 71 & 0.12030 & 68 \rightarrow 72 & 0.11661 \\ & 69 \rightarrow 72 & 0.25559 & 70 \rightarrow 72 & 0.27084 \\ & 70 \rightarrow 73 & 0.10097 & \pi \rightarrow \pi^* \\ & 66 \rightarrow 73 & 0.11573 & \pi \rightarrow \pi^* \\ & 66 \rightarrow 73 & 0.11573 & n \rightarrow \pi^* \\ & 66 \rightarrow 73 & 0.11573 & n \rightarrow \pi^* \\ & 66 \rightarrow 73 & 0.32511 & 67 \rightarrow 73 & 0.45984 \\ & 50 \rightarrow 5_{10} & 5.0184 \text{ eV}/247.06 \text{ nm} & 0.0251 & 63 \rightarrow 73 & 0.10688 & \pi \rightarrow \pi^* \\ & 64 \rightarrow 71 & 0.10602 & n \rightarrow \pi^* \\ & 65 \rightarrow 73 & 0.11933 & 70 \rightarrow 73 & 0.45984 \\ & 67 \rightarrow 73 & 0.24401 & 68 \rightarrow 73 & 0.10688 & \pi \rightarrow \pi^* \\ & 64 \rightarrow 71 & 0.10602 & n \rightarrow \pi^* \\ & 65 \rightarrow 73 & 0.12127 & 68 \rightarrow 73 & 0.18040 \\ & 66 \rightarrow 73 & 0.28614 & 67 \rightarrow 73 & 0.28614 \\ & 67 \rightarrow 73 & 0.28614 & 67 \rightarrow 73 & 0.48071 \\ & 70 \rightarrow 73 & 0.48071 & 7 \rightarrow \pi^* \\ & 68 \rightarrow 71 & 0.15239 & \pi \rightarrow \pi^* \\ & 68 \rightarrow 71 & 0.15239 & \pi \rightarrow \pi^* \\ & 68 \rightarrow 71 & 0.15239 & \pi \rightarrow \pi^* \\ & 64 \rightarrow 71 & 0.27197 & n \rightarrow \pi^* \\ & 65 \rightarrow 71 & 0.14545 & 69 \rightarrow 71 & 0.14545 & 69$				$03 \rightarrow /1$	0.30739	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$00 \rightarrow 72$	0.10002	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S \rightarrow S$	4.0087 eV/252.58 nm	0.0214	$70 \rightarrow 72$ $62 \rightarrow 71$	0.29950	π ∖π [*]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{S}_0 \rightarrow \mathbf{S}_7$	4.9087 e v/252.58 mm	0.0214	$62 \rightarrow 71$	0.13980	$n \rightarrow \pi^*$
$\begin{split} & \begin{array}{ccccccccccccccccccccccccccccccccccc$				$68 \rightarrow 72$	0.64819	11 <i>/ n</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$70 \rightarrow 72$	0.10524	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_0 \rightarrow S_0$	4 9530 eV/250 32 nm	0 2068	$64 \rightarrow 71$	0.41542	$\pi \rightarrow \pi^*$
$\begin{split} S_0 \rightarrow S_9 & 4.9639 \text{ eV}/249.77 \text{ nm} & 0.0046 & 63 \rightarrow 72 & 0.25559 \\ 70 \rightarrow 72 & 0.27084 \\ 70 \rightarrow 73 & 0.10097 \\ 65 \rightarrow 73 & 0.11573 & \pi \rightarrow \pi^* \\ 65 \rightarrow 73 & 0.17337 & n \rightarrow \pi^* \\ 66 \rightarrow 73 & 0.32401 \\ 68 \rightarrow 73 & 0.19393 \\ 70 \rightarrow 73 & 0.45984 \\ 8 \rightarrow 73 & 0.19393 \\ 70 \rightarrow 73 & 0.45984 \\ 8 \rightarrow 73 & 0.10688 & \pi \rightarrow \pi^* \\ 64 \rightarrow 71 & 0.10602 & n \rightarrow \pi^* \\ 64 \rightarrow 71 & 0.10602 & n \rightarrow \pi^* \\ 65 \rightarrow 73 & 0.184 \text{ eV}/247.06 \text{ nm} & 0.0251 & 63 \rightarrow 73 & 0.10688 & \pi \rightarrow \pi^* \\ 64 \rightarrow 71 & 0.10602 & n \rightarrow \pi^* \\ 65 \rightarrow 73 & 0.18040 & 66 \rightarrow 73 & 0.28614 \\ 67 \rightarrow 73 & 0.28614 & 67 \rightarrow 73 & 0.18698 & 69 \rightarrow 72 & 0.10647 \\ 69 \rightarrow 72 & 0.10647 & 69 \rightarrow 73 & 0.11953 \\ 70 \rightarrow 73 & 0.18698 & 69 \rightarrow 72 & 0.10647 \\ 69 \rightarrow 73 & 0.11953 & 70 \rightarrow 73 & 0.16471 \\ 50 \rightarrow 51_1 & 5.0682 \text{ eV}/244.63 \text{ nm} & 0.0093 & 62 \rightarrow 71 & 0.64707 & \pi \rightarrow \pi^* \\ 68 \rightarrow 72 & 0.10647 & 68 \rightarrow 72 & 0.15559 \\ S_0 \rightarrow S_{12} & 5.0916 \text{ eV}/243.51 \text{ nm} & 0.5402 & 63 \rightarrow 71 & 0.15239 & \pi \rightarrow \pi^* \\ 65 \rightarrow 71 & 0.15239 & \pi \rightarrow \pi^* \\ 65 \rightarrow 71 & 0.15239 & \pi \rightarrow \pi^* \\ 65 \rightarrow 71 & 0.16313 & 69 \rightarrow 72 & 0.29602 \\ 70 \rightarrow 72 & 0.45446 & 70 \rightarrow 73 & 0.16131 \\ S_0 \rightarrow S_{13} & 5.2144 \text{ eV}/237.77 \text{ nm} & 0.0502 & 62 \rightarrow 71 & 0.15481 & \pi \rightarrow \pi^* \\ 65 \rightarrow 71 & 0.15481 & \pi \rightarrow \pi^* \\ 65 \rightarrow 71 & 0.15481 & \pi \rightarrow \pi^* \\ 65 \rightarrow 71 & 0.14702 & 0.14702 \\ \end{array}$	50 . 58	1.9550 0 77250.52 mil	0.2000	65→71	0.33878	$n \rightarrow \pi^*$
$\begin{split} S_0 \rightarrow S_9 & 4.9639 \text{ eV}/249.77 \text{ nm} & 0.0046 & \begin{array}{c} 68 \rightarrow 72 & 0.25559 \\ 70 \rightarrow 72 & 0.27084 \\ 70 \rightarrow 73 & 0.01097 \\ 65 \rightarrow 73 & 0.11573 & \pi \rightarrow \pi^* \\ 65 \rightarrow 73 & 0.11573 & \pi \rightarrow \pi^* \\ 66 \rightarrow 73 & 0.35211 \\ 67 \rightarrow 73 & 0.24401 \\ 68 \rightarrow 73 & 0.19393 \\ 70 \rightarrow 73 & 0.45984 \\ 8 \rightarrow 73 & 0.19393 \\ 70 \rightarrow 73 & 0.45984 \\ 64 \rightarrow 71 & 0.10602 & n \rightarrow \pi^* \\ 64 \rightarrow 71 & 0.10602 & n \rightarrow \pi^* \\ 65 \rightarrow 73 & 0.18400 \\ 66 \rightarrow 73 & 0.28614 \\ 67 \rightarrow 73 & 0.21127 \\ 68 \rightarrow 73 & 0.11953 \\ 70 \rightarrow 72 & 0.12415 \\ 70 \rightarrow 73 & 0.48071 \\ 88 \rightarrow 72 & 0.12415 \\ 70 \rightarrow 73 & 0.48071 \\ 88 \rightarrow 72 & 0.12415 \\ 70 \rightarrow 73 & 0.48071 \\ 88 \rightarrow 72 & 0.12415 \\ 70 \rightarrow 73 & 0.48071 \\ 88 \rightarrow 72 & 0.15559 \\ S_0 \rightarrow S_{12} & 5.0916 \text{ eV}/243.51 \text{ nm} & 0.5402 \\ \begin{array}{c} 63 \rightarrow 71 & 0.1529 \\ 63 \rightarrow 71 & 0.15599 \\ 64 \rightarrow 71 & 0.27197 \\ 0 \rightarrow 73 \\ 65 \rightarrow 71 & 0.15599 \\ 89 \rightarrow 72 & 0.45446 \\ 70 \rightarrow 73 & 0.16131 \\ 80 \rightarrow 72 & 0.45446 \\ 70 \rightarrow 73 & 0.16131 \\ S_0 \rightarrow S_{13} & 5.2144 \text{ eV}/237.77 \text{ nm} & 0.0502 \\ \begin{array}{c} 62 \rightarrow 71 & 0.15481 \\ 70 \rightarrow 73 & 0.16131 \\ 65 \rightarrow 71 & 0.15481 \\ 70 \rightarrow 73 & 0.16131 \\ 83 \rightarrow 71 & 0.15481 \\ 70 \rightarrow 73 & 0.16131 \\ 83 \rightarrow 71 & 0.15481 \\ 70 \rightarrow 73 & 0.16131 \\ 83 \rightarrow 71 & 0.15481 \\ 70 \rightarrow 73 & 0.16131 \\ 83 \rightarrow 71 & 0.14702 \\ \end{array}$				$66 \rightarrow 71$	0.12030	11 12
$\begin{split} & \overset{(6)}{=} -72 & 0.25559 \\ & 70 \rightarrow 72 & 0.27084 \\ & 70 \rightarrow 73 & 0.10097 \\ & & & & & & & & & & & & & & & & & & $				$68 \rightarrow 72$	0.11661	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$69 \rightarrow 72$	0.25559	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$70 \rightarrow 72$	0.27084	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$70 \rightarrow 73$	0.10097	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_0 \rightarrow S_9$	4.9639 eV/249.77 nm	0.0046	63→73	0.11573	$\pi \rightarrow \pi^*$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				65→73	0.17337	$n \rightarrow \pi^*$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				66→73	0.35211	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				67→73	0.24401	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				68→73	0.19393	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				70→73	0.45984	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S_0 \rightarrow S_{10}$	5.0184 eV/247.06 nm	0.0251	63→73	0.10688	$\pi \rightarrow \pi^*$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				64→71	0.10602	$n \rightarrow \pi^*$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				65→73	0.18040	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				66→73	0.28614	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				67→73	0.21127	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				68→73	0.18698	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				69→72	0.10647	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				69→73	0.11953	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				70→72	0.12415	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ ~			$70 \rightarrow 73$	0.48071	*
$S_{0} \rightarrow S_{12} = 5.0916 \text{ eV}/243.51 \text{ nm} = 0.5402 = \begin{array}{c} 63 \rightarrow 71 & 0.15994 & n \rightarrow \pi \\ 68 \rightarrow 72 & 0.15559 & \\ 63 \rightarrow 71 & 0.15239 & \pi \rightarrow \pi^{*} \\ 64 \rightarrow 71 & 0.27197 & n \rightarrow \pi^{*} \\ 65 \rightarrow 71 & 0.14545 & \\ 69 \rightarrow 72 & 0.29602 & \\ 70 \rightarrow 72 & 0.45446 & \\ 70 \rightarrow 73 & 0.16131 & \\ S_{0} \rightarrow S_{13} = 5.2144 \text{ eV}/237.77 \text{ nm} = 0.0502 = \begin{array}{c} 62 \rightarrow 71 & 0.15481 & \pi \rightarrow \pi^{*} \\ 63 \rightarrow 71 & 0.63135 & n \rightarrow \pi^{*} \\ 65 \rightarrow 71 & 0.14702 & \end{array}$	$S_0 \rightarrow S_{11}$	5.0682 eV/244.63 nm	0.0093	62→71	0.64707	$\pi \rightarrow \pi_*$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$63 \rightarrow /1$	0.15994	n→π
$S_{0} \rightarrow S_{12} = 5.0916 \text{ eV}/243.51 \text{ nm} = 0.5402 = 63 \rightarrow 71 = 0.15239 = \pi \rightarrow \pi \\ 64 \rightarrow 71 = 0.27197 = n \rightarrow \pi^{*} \\ 65 \rightarrow 71 = 0.14545 \\ 69 \rightarrow 72 = 0.29602 \\ 70 \rightarrow 72 = 0.45446 \\ 70 \rightarrow 73 = 0.16131 \\ S_{0} \rightarrow S_{13} = 5.2144 \text{ eV}/237.77 \text{ nm} = 0.0502 = 62 \rightarrow 71 = 0.15481 = \pi \rightarrow \pi^{*} \\ 63 \rightarrow 71 = 0.63135 = n \rightarrow \pi^{*} \\ 65 \rightarrow 71 = 0.14702 \\ \end{array}$	a a	5 001 C XU0 42 51	0 5 400	$68 \rightarrow /2$	0.15559	*
$S_{0} \rightarrow S_{13} = 5.2144 \text{ eV}/237.77 \text{ nm} = 0.0502 =$	$S_0 \rightarrow S_{12}$	5.0916 eV/243.51 nm	0.5402	$63 \rightarrow /1$	0.15239	$\pi \rightarrow \pi_{*}$
$S_{0} \rightarrow S_{13} = 5.2144 \text{ eV}/237.77 \text{ nm} = 0.0502 = 0.000000000000000000000000000000000$				$04 \rightarrow /1$	0.2/19/	n→π
$S_{0} \rightarrow S_{13} = 5.2144 \text{ eV}/237.77 \text{ nm} = 0.0502 = 0.000000000000000000000000000000000$				$0 \rightarrow /1$	0.14545	
$S_{0} \rightarrow S_{13} \qquad 5.2144 \text{ eV}/237.77 \text{ nm} \qquad 0.0502 \qquad \begin{array}{c} 0.29002 \\ 70 \rightarrow 72 \\ 62 \rightarrow 71 \\ 63 \rightarrow 71 \\ 63 \rightarrow 71 \\ 65 \rightarrow 71 \\ 65 \rightarrow 71 \\ 0.14702 \end{array} \qquad \begin{array}{c} 0.29002 \\ 0.45446 \\ 70 \rightarrow 73 \\ 0.16131 \\ \pi \rightarrow \pi^{*} \\ n \rightarrow \pi^{*} \\ 65 \rightarrow 71 \\ 0.14702 \\ \end{array}$				$09 \rightarrow /1$	0.10923	
$S_{0} \rightarrow S_{13} \qquad 5.2144 \text{ eV}/237.77 \text{ nm} \qquad 0.0502 \qquad \begin{array}{c} 70 \rightarrow 72 & 0.45446 \\ 70 \rightarrow 73 & 0.16131 \\ 62 \rightarrow 71 & 0.15481 & \pi \rightarrow \pi^{*} \\ 63 \rightarrow 71 & 0.63135 & n \rightarrow \pi^{*} \\ 65 \rightarrow 71 & 0.14702 \end{array}$				$09 \rightarrow 12$	0.29602	
$S_{0} \rightarrow S_{13} \qquad 5.2144 \text{ eV}/237.77 \text{ nm} \qquad 0.0502 \qquad \begin{array}{c} 70 \rightarrow 75 \\ 62 \rightarrow 71 \\ 63 \rightarrow 71 \\ 65 \rightarrow 71 \\ 65 \rightarrow 71 \\ 0.14702 \\ \end{array} \qquad \begin{array}{c} 0.16151 \\ \pi \rightarrow \pi^{*} \\ n \rightarrow \pi^{*} \\ n \rightarrow \pi^{*} \end{array}$				$10 \rightarrow 12$ $70 \rightarrow 72$	0.43440	
$S_0 \rightarrow S_{13}$ $S_{2144} \in \sqrt{257.77}$ mm 0.0502 $02 \rightarrow 71$ 0.15481 $\pi \rightarrow \pi^*$ $63 \rightarrow 71$ 0.63135 $n \rightarrow \pi^*$ $65 \rightarrow 71$ 0.14702	S S	5 2111 aV/227 77 mm	0.0502	$10 \rightarrow 13$	0.10131	~ \ ~ *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{s}_0 \rightarrow \mathbf{s}_{13}$	J.2144 CV/25/.// IIIN	0.0302	$02 \rightarrow /1$ 62 $\rightarrow 71$	0.13481	$n \rightarrow \pi^*$
				$65 \rightarrow 71$	0.03133	$\Pi \rightarrow \eta$

Table S7. Electronic transitions involved in the excitation of AAz3Me in visible light region.

S20

			67	0 10063	
			$70 \rightarrow 72$	0.10005	
S ₀ →S ₁	5 3371 eV/232 31 nm	0.4356	$64 \rightarrow 71$	0.38475	$\pi \rightarrow \pi^*$
50 7514	5.5571 C V/252.51 IIII	0.4550	$69 \rightarrow 71$	0.30473	$n \rightarrow \pi^*$
			$69 \rightarrow 72$	0.10302	11 <i>/ n</i>
			$70 \rightarrow 72$	0.10915	
			$70 \rightarrow 72$	0.10713	
So Str	5 5085 eV/225 08 nm	0.0029	$66 \rightarrow 73$	0.36378	$\pi \rightarrow \pi^*$
50 7515	5.5085 C V/225.08 IIII	0.0027	$67 \rightarrow 73$	0.30378	$n \rightarrow \pi^*$
			68-73	0.57699	11 /1
S.→S.	5 5752 eV/222 39 nm	0.0003	$69 \rightarrow 73$	0.68212	$\pi \rightarrow \pi^*$
50 , 516	5.5752 C V7222.57 IIII	0.0005	$70 \rightarrow 73$	0.12102	$n \rightarrow \pi^*$
S> S	5 7331 eV/216 26 nm	0.0001	$63 \rightarrow 71$	0.12172	$\pi \rightarrow \pi^*$
50 7517	5.7551 C V/210.20 IIII	0.0001	$66 \rightarrow 72$	0.13211	$n \rightarrow \pi^*$
			$67 \rightarrow 72$	0.62422	11 /1
			$68 \rightarrow 72$	0.02422	
S	5 8122 eV/213 32 nm	0.0000	$65 \rightarrow 73$	0.11555	π ∖π [*]
$S_0 \rightarrow S_{18}$	5.8122 e v/215.52 mm	0.0000	$66 \rightarrow 73$	0.01850	$n \rightarrow \pi^*$
			$67 \rightarrow 73$	0.22808	$\Pi \rightarrow \pi$
C \C	5 8768 aV/210 07 nm	0.0737	$61 \rightarrow 71$	0.10972	~ \ ~ *
$\mathbf{S}_0 \rightarrow \mathbf{S}_{19}$	5.8708 e v/210.97 IIII	0.0737	$01 \rightarrow 71$	0.11332	$n \rightarrow n$
			$09 \rightarrow 72$	0.23774	$\Pi \rightarrow \pi$
			$09 \rightarrow 73$	0.13478	
C \C	6.0100 aV/206.20 nm	0.0043	$70 \rightarrow 74$	0.00342	~ \~ [*]
$\mathbf{S}_0 \rightarrow \mathbf{S}_{20}$	0.0100 e v/200.30 IIII	0.0043	$00 \rightarrow 72$	0.23900	$n \rightarrow n$
			$00 \rightarrow 73$	0.20373	$\Pi \rightarrow \pi$
			$0 \rightarrow 13$	0.30000	
			$68 \rightarrow 73$	0.23329	
S T	$25105 {}_{\rm o}V/402 {}_{\rm 10 nm}$	0.0000	$00 \rightarrow 71$	0.17401	~ \~ [*]
$S_0 \rightarrow \Gamma_1$	2.5195 ev/492.10 IIII	0.0000	$09 \rightarrow 71$	0.27772	$n \rightarrow n$
			$09 \rightarrow 74$	0.10571	$\Pi \rightarrow \pi$
			$70 \rightarrow 71$	0.01304	
S T	2.8511 oV/424.86 nm	0.0000	$70 \rightarrow 72$	0.14177	~ \~ [*]
$S_0 \rightarrow I_2$	2.8511 ev/454.80 IIII	0.0000	$09 \rightarrow 71$	0.00823	$n \rightarrow n$
S T	2.0482 oV/420.54 nm	0.0000	$70 \rightarrow 71$	0.31744	$\Pi \rightarrow \pi$
$S_0 \rightarrow I_3$	2.9482 e v/420.34 IIII	0.0000	$0/\rightarrow/1$	0.19300	$n \rightarrow n$
S T	2.7501 oV/220.62 nm	0.0000	$00 \rightarrow 71$	0.03887	$\Pi \rightarrow \pi$
$S_0 \rightarrow I_4$	5.7501 E ¥7550.02 IIII	0.0000	$62 \rightarrow 71$	0.110/4	<i>π</i> → <i>π</i> *
			$66 \rightarrow 71$	0.10309	$\Pi \rightarrow \pi$
			$67 \rightarrow 71$	0.20300	
			$68 \rightarrow 71$	0.37931	
S \T_	3 8512 eV/321 01 nm	0.0000	$60 \rightarrow 71$	0.20044	π ∖π [*]
$S_0 \rightarrow I_5$	J.0J12 UV/J21.94 IIII	0.0000	$0 \rightarrow / 1$ $70 \rightarrow 72$	0.17330	$n \rightarrow n$ $n \rightarrow \pi^*$
			$10 \rightarrow 12$	0.03940	11 → 71

Figure S7. Contour plots of wavefunction of states of AAz3Me involved in absorption in visible light region. The C, O, N and H are in gray, red, blue and white, respectively. The isovalue is ± 0.02 a.u.

Figure S8. The optimized structure of S_0 of Az calculated at B3LYP/6-311g(d) level. The C, O, N and H are in gray, red, blue and white, respectively.

	Table S8. Mulliken charge analysis of Az in S_0 , S_1 and T_1 .						
Number ^a	Element	S_0	$\mathbf{S_1}$	T_1	$S_1 - S_0^{b}$	$T_1-S_0^c$	
1	С	-0.1862	-0.1882	-0.1942	-0.0020	-0.0080	
2	С	-0.1942	-0.1669	-0.1626	0.0274	0.0316	
3	С	-0.1991	-0.1696	-0.1751	0.0294	0.0239	
4	С	-0.1892	-0.1716	-0.2010	0.0176	-0.0119	
5	С	0.1502	0.1451	0.1520	-0.0051	0.0018	
6	Н	0.2120	0.2313	0.2278	0.0193	0.0158	
7	С	0.1363	0.1560	0.1614	0.0197	0.0251	
8	Н	0.2209	0.2402	0.2314	0.0193	0.0104	
9	Ν	-0.2726	-0.3438	-0.3267	-0.0711	-0.0540	
10	С	-0.1098	-0.1199	-0.1245	-0.0101	-0.0148	
11	С	0.5142	0.5107	0.5147	-0.0035	0.0006	
12	Ν	-0.6838	-0.6440	-0.6582	0.0398	0.0257	
13	С	0.5838	0.5829	0.5770	-0.0009	-0.0068	
14	С	0.4966	0.4623	0.4840	-0.0343	-0.0126	
15	Ν	-0.6614	-0.6645	-0.6615	-0.0031	-0.0001	
16	Ο	-0.3458	-0.3416	-0.3469	0.0042	-0.0012	
17	Ο	-0.2980	-0.3325	-0.3192	-0.0345	-0.0212	
18	Ν	-0.3413	-0.3785	-0.3637	-0.0372	-0.0225	
19	Н	0.3740	0.3758	0.3766	0.0018	0.0026	
20	Н	0.3757	0.3711	0.3723	-0.0047	-0.0034	
21	Н	0.2090	0.2189	0.2150	0.0099	0.0060	
22	Н	0.2085	0.2266	0.2215	0.0181	0.0130	

^a Numbers are consist with the optimized structure in Figure S8. ^b The difference in Mulliken charges between S_1 and S_0 . ^c The difference in Mulliken charges between T_1 and S_0 .

Figure S9. The optimized structure of S_0 of AzMe calculated at B3LYP/6-311g(d) level. The C, O, N and H are in gray, red, blue and white, respectively.

	Table S9. Mulliken charge analysis of AzMe in S_0 , S_1 and T_1 .						
Number ^a	Element	S ₀	$\mathbf{S_1}$	T_1	$S_1-S_0^{b}$	$T_1-S_0^c$	
1	С	-0.1870	-0.1931	-0.1962	-0.0061	-0.0092	
2	С	-0.1948	-0.1687	-0.1629	0.0261	0.0319	
3	С	-0.1951	-0.1721	-0.1730	0.0230	0.0221	
4	С	-0.1906	-0.1835	-0.2056	0.0071	-0.0150	
5	С	0.1507	0.1419	0.1520	-0.0088	0.0013	
6	Н	0.2104	0.2230	0.2247	0.0126	0.0143	
7	С	0.1308	0.1534	0.1588	0.0226	0.0280	
8	Н	0.2202	0.2334	0.2291	0.0133	0.0089	
9	Ν	-0.2736	-0.3421	-0.3289	-0.0685	-0.0553	
10	С	-0.0931	-0.1109	-0.1165	-0.0178	-0.0233	
11	С	0.4853	0.4816	0.4886	-0.0037	0.0033	
12	Ν	-0.4657	-0.4231	-0.4431	0.0426	0.0226	
13	С	0.5793	0.5838	0.5748	0.0044	-0.0045	
14	С	0.4985	0.4645	0.4849	-0.0340	-0.0135	
15	Ν	-0.6606	-0.6623	-0.6582	-0.0018	0.0023	
16	Ο	-0.3574	-0.3453	-0.3570	0.0121	0.0003	
17	Ο	-0.3010	-0.3332	-0.3224	-0.0322	-0.0214	
18	Ν	-0.3594	-0.3898	-0.3780	-0.0304	-0.0186	
19	Н	0.3743	0.3710	0.3711	-0.0033	-0.0032	
20	Н	0.2077	0.2135	0.2127	0.0057	0.0050	
21	Н	0.2075	0.2214	0.2197	0.0139	0.0122	
22	С	-0.5110	-0.5141	-0.5118	-0.0031	-0.0007	
23	Н	0.2343	0.2440	0.2385	0.0097	0.0042	
24	Н	0.2343	0.2440	0.2385	0.0097	0.0041	
25	Н	0.2560	0.2627	0.2603	0.0067	0.0043	

^a Numbers are consist with the optimized structure of Figure S9. ^b The difference of Mulliken charges between S_1 and S_0 . ^c The difference of Mulliken charges between T_1 and S_0 .

Figure S10. The optimized structure of S₀ of AAz13 calculated at B3LYP/6-311g(d) level. The C,

Table S10. Mulliken charge analysis of AAz13 in S_0 , S_1 and T_1 .						
Number ^a	Element	S ₀	S_1	T_1	$S_1-S_0^{b}$	$T_1-S_0^c$
1	С	-0.1860	-0.1886	-0.1942	-0.0026	-0.0083
2	С	-0.1930	-0.1660	-0.1615	0.0270	0.0316
3	С	-0.1951	-0.1680	-0.1703	0.0271	0.0248
4	С	-0.1919	-0.1771	-0.2024	0.0148	-0.0105
5	С	0.1527	0.1497	0.1558	-0.0031	0.0031
6	С	0.1366	0.1560	0.1621	0.0195	0.0255
7	Н	0.2224	0.2403	0.2334	0.0179	0.0110
8	Ν	-0.2724	-0.3423	-0.3261	-0.0700	-0.0538
9	Ν	-0.3645	-0.4031	-0.3875	-0.0387	-0.0231
10	С	0.5034	0.5008	0.5072	-0.0026	0.0038
11	С	-0.0716	-0.0807	-0.0916	-0.0090	-0.0200
12	Ν	-0.5221	-0.4825	-0.4979	0.0396	0.0242
13	Ο	-0.3691	-0.3486	-0.3661	0.0206	0.0030
14	С	0.5955	0.5963	0.5896	0.0008	-0.0059
15	Ν	-0.5000	-0.5050	-0.4981	-0.0050	0.0019
16	С	0.4773	0.4415	0.4640	-0.0358	-0.0133
17	Ο	-0.3104	-0.3474	-0.3352	-0.0370	-0.0249
18	Н	0.2158	0.2338	0.2324	0.0179	0.0165
19	Н	0.2108	0.2200	0.2173	0.0092	0.0064
20	Н	0.2101	0.2273	0.2232	0.0172	0.0132
21	С	0.3842	0.3861	0.3854	0.0019	0.0012
22	Ο	-0.2272	-0.2389	-0.2326	-0.0117	-0.0054
23	С	-0.6758	-0.6783	-0.6765	-0.0025	-0.0007
24	Н	0.2516	0.2636	0.2572	0.0121	0.0056
25	Н	0.2463	0.2321	0.2389	-0.0142	-0.0074
26	Н	0.2478	0.2415	0.2442	-0.0063	-0.0035
27	С	0.3818	0.3817	0.3808	-0.0001	-0.0011
28	0	-0.2265	-0.2204	-0.2238	0.0061	0.0027
29	С	-0.6749	-0.6742	-0.6736	0.0007	0.0013
30	Н	0.2473	0.2481	0.2472	0.0007	-0.0001
31	Н	0.2541	0.2564	0.2562	0.0023	0.0021
32	Н	0.2429	0.2461	0.2430	0.0032	0.0001

O, N and H are in gray, red, blue and white, respectively.

^a Numbers are consist with the optimized structure of Figure S10. ^b The difference of Mulliken charges between S_1 and S_0 . ^c The difference of Mulliken charges between T_1 and S_0 .

Figure S11. The optimized structure of S_0 of AAz13-1 calculated at B3LYP/6-311g(d) level. The C, O, N and H are in gray, red, blue and white, respectively.

Number ^a	Element	S ₀	S ₁	T ₁	S ₁ -S ₀ ^b	$T_1-S_0^c$
1	С	-0.1860	-0.1884	-0.1941	-0.0025	-0.0081
2	С	-0.1930	-0.1660	-0.1617	0.0270	0.0313
3	С	-0.1949	-0.1675	-0.1701	0.0274	0.0248
4	С	-0.1918	-0.1767	-0.2021	0.0151	-0.0103
5	С	0.1527	0.1495	0.1557	-0.0032	0.0030
6	С	0.1367	0.1558	0.1620	0.0191	0.0253
7	Н	0.2223	0.2403	0.2334	0.0180	0.0110
8	Ν	-0.2725	-0.3428	-0.3261	-0.0703	-0.0536
9	Ν	-0.3636	-0.4025	-0.3866	-0.0389	-0.0229
10	С	0.5046	0.5022	0.5084	-0.0024	0.0038
11	С	-0.0719	-0.0805	-0.0918	-0.0086	-0.0199
12	Ν	-0.5225	-0.4833	-0.4985	0.0392	0.0240
13	Ο	-0.3700	-0.3493	-0.3674	0.0207	0.0026
14	С	0.5945	0.5953	0.5884	0.0008	-0.0060
15	Ν	-0.4994	-0.5043	-0.4974	-0.0050	0.0020
16	С	0.4767	0.4403	0.4634	-0.0363	-0.0132
17	Ο	-0.3105	-0.3479	-0.3352	-0.0373	-0.0246
18	Н	0.2158	0.2338	0.2323	0.0180	0.0166
19	Н	0.2108	0.2200	0.2172	0.0092	0.0065
20	Н	0.2100	0.2273	0.2232	0.0173	0.0131
21	С	0.3826	0.3852	0.3841	0.0026	0.0016
22	Ο	-0.2313	-0.2432	-0.2367	-0.0119	-0.0054
23	С	-0.6757	-0.6773	-0.6763	-0.0016	-0.0005
24	Н	0.2522	0.2378	0.2449	-0.0144	-0.0073
25	Н	0.2528	0.2636	0.2577	0.0107	0.0048
26	Н	0.2465	0.2403	0.2431	-0.0062	-0.0034
27	С	0.3801	0.3803	0.3793	0.0001	-0.0008
28	0	-0.2310	-0.2244	-0.2284	0.0066	0.0026
29	С	-0.6742	-0.6733	-0.6731	0.0009	0.0011
30	Н	0.2460	0.2471	0.2461	0.0011	0.0001
31	Н	0.2602	0.2621	0.2622	0.0019	0.0019
32	Н	0.2440	0.2467	0.2439	0.0027	-0.0001

Table S11. Mulliken charge analysis of AAz13 in S₀, S₁ and T₁.

Figure S12. The optimized structure of S₀ of AAz3 calculated at B3LYP/6-311g(d) level. The C, O, N and H are in gray, red, blue and white, respectively.

Table S12. Mulliken charge analysis of AAz3 in S₀, S₁ and T₁.

Number ^a	Element	S ₀	\mathbf{S}_1	T ₁	S ₁ - S ₀ ^b	$T_1-S_0^c$
1	С	-0.1860	-0.1878	-0.1939	-0.0018	-0.0079
2	С	-0.1935	-0.1659	-0.1620	0.0276	0.0315
3	С	-0.1986	-0.1682	-0.1733	0.0304	0.0253
4	С	-0.1910	-0.1726	-0.2009	0.0184	-0.0100
5	С	0.1490	0.1437	0.1502	-0.0053	0.0012
6	Н	0.2129	0.2332	0.2297	0.0203	0.0168
7	С	0.1411	0.1597	0.1658	0.0186	0.0247
8	Н	0.2218	0.2414	0.2329	0.0196	0.0111
9	Ν	-0.2721	-0.3417	-0.3254	-0.0696	-0.0533
10	С	-0.0940	-0.1002	-0.1091	-0.0062	-0.0152
11	С	0.5240	0.5215	0.5266	-0.0025	0.0026
12	Ν	-0.6907	-0.6507	-0.6662	0.0400	0.0245
13	С	0.5896	0.5880	0.5816	-0.0017	-0.0080
14	С	0.4732	0.4357	0.4604	-0.0376	-0.0128
15	Ν	-0.4990	-0.5053	-0.4976	-0.0064	0.0014
16	Ο	-0.3555	-0.3364	-0.3532	0.0191	0.0023
17	Ο	-0.3115	-0.3499	-0.3362	-0.0384	-0.0247
18	Ν	-0.3401	-0.3738	-0.3619	-0.0337	-0.0218
19	Н	0.3745	0.3769	0.3768	0.0024	0.0023
20	Н	0.2099	0.2204	0.2166	0.0106	0.0067
21	Н	0.2095	0.2281	0.2228	0.0187	0.0133
22	С	0.3876	0.3902	0.3890	0.0026	0.0014
23	С	-0.6759	-0.6785	-0.6763	-0.0027	-0.0005
24	Н	0.2505	0.2631	0.2557	0.0126	0.0052
25	Н	0.2493	0.2335	0.2417	-0.0158	-0.0076
26	Н	0.2462	0.2396	0.2428	-0.0066	-0.0034
27	0	-0.2315	-0.2442	-0.2367	-0.0127	-0.0052

^a Numbers are consist with the optimized structure of Figure S12. ^b The difference of Mulliken charges between S_1 and S_0 . ^c The difference of Mulliken charges between T_1 and S_0 .

Figure S13. The optimized structure of S_0 of AAz3Me calculated at B3LYP/6-311g(d) level. The C, O, N and H are in gray, red, blue and white, respectively.

Table S13. Mulliken charge analysis of AAz3Me in S_0 , S_1 and T_1 .						
Number ^a	Element	S_0	S_1	T_1	$S_1-S_0^{b}$	$T_1-S_0^c$
1	С	-0.1868	-0.1922	-0.1957	-0.0055	-0.0089
2	С	-0.1941	-0.1680	-0.1623	0.0262	0.0318
3	С	-0.1946	-0.1706	-0.1712	0.0241	0.0235
4	С	-0.1925	-0.1841	-0.2054	0.0084	-0.0129
5	С	0.1495	0.1409	0.1505	-0.0085	0.0010

6	Н	0.2112	0.2250	0.2265	0.0137	0.0153
7	С	0.1360	0.1574	0.1633	0.0213	0.0272
8	Н	0.2210	0.2349	0.2309	0.0138	0.0098
9	Ν	-0.2729	-0.3407	-0.3273	-0.0678	-0.0544
10	С	-0.0787	-0.0922	-0.1021	-0.0135	-0.0234
11	С	0.4947	0.4911	0.4994	-0.0036	0.0047
12	Ν	-0.4684	-0.4265	-0.4468	0.0419	0.0216
13	С	0.5828	0.5851	0.5763	0.0023	-0.0066
14	С	0.4762	0.4414	0.4639	-0.0347	-0.0123
15	Ν	-0.4951	-0.4981	-0.4902	-0.0031	0.0049
16	0	-0.3685	-0.3459	-0.3675	0.0226	0.0010
17	0	-0.3146	-0.3518	-0.3385	-0.0372	-0.0239
18	Ν	-0.3583	-0.3870	-0.3767	-0.0287	-0.0184
19	Н	0.2087	0.2152	0.2143	0.0065	0.0057
20	Н	0.2085	0.2230	0.2211	0.0145	0.0126
21	С	0.3863	0.3873	0.3868	0.0011	0.0005
22	С	-0.6755	-0.6765	-0.6759	-0.0010	-0.0004
23	Н	0.2503	0.2621	0.2535	0.0118	0.0032
24	Н	0.2482	0.2343	0.2427	-0.0139	-0.0055
25	Н	0.2451	0.2402	0.2422	-0.0050	-0.0029
26	0	-0.2331	-0.2421	-0.2372	-0.0090	-0.0041
27	С	-0.5145	-0.5177	-0.5151	-0.0032	-0.0007
28	Н	0.2343	0.2435	0.2376	0.0092	0.0034
29	Н	0.2373	0.2465	0.2409	0.0092	0.0037
30	Н	0.2575	0.2655	0.2620	0.0080	0.0045

^a Numbers are consist with the optimized structure of Figure S13. ^b The difference of Mulliken charges between S₁ and S₀. ^c The difference of Mulliken charges between T₁ and S₀.

Figure S14. The optimized structure of S₀ of AAz1 calculated at B3LYP/6-311g(d) level. The C, O, N and H are in gray, red, blue and white, respectively.

Table S14. Mulliken charge analysis of AAz1 in S_0 , S_1 and T_1 .						
Number ^a	Element	S ₀	S_1	T ₁	$S_1 - S_0^{b}$	$T_1-S_0^c$
1	С	-0.1862	-0.1890	-0.1945	-0.0028	-0.0083
2	С	-0.1935	-0.1668	-0.1622	0.0268	0.0314
3	С	-0.1954	-0.1689	-0.1717	0.0264	0.0237
4	С	-0.1898	-0.1756	-0.2017	0.0142	-0.0118
5	С	0.1540	0.1511	0.1575	-0.0029	0.0035
6	С	0.1317	0.1521	0.1577	0.0204	0.0259
7	Н	0.2217	0.2393	0.2322	0.0176	0.0105
8	Ν	-0.2729	-0.3444	-0.3270	-0.0716	-0.0541

9 N -0.3651 -0.4070 -0.3885 -0.0419 -0.0234 10 C 0.4945 0.4920 0.4966 -0.0025 0.0021 11 C -0.0870 -0.0997 -0.1070 -0.0126 -0.0200 12 N -0.5186 -0.4787 -0.4936 0.0399 0.0250 13 O -0.3581 -0.3504 -0.3592 0.0077 -0.0012 14 C 0.5913 0.5926 0.5859 0.0012 -0.0054 15 N -0.6654 -0.6676 -0.6643 -0.0022 0.0011 16 C 0.5000 0.4661 0.4868 -0.0335 -0.0218 18 H 0.2151 0.2323 0.2310 0.0171 0.0159 19 H 0.2100 0.2186 0.2160 0.0086 0.0060 20 H 0.2093 0.2261 0.2221 0.0168 0.0128 21 C 0.							
10C0.49450.49200.4966-0.00250.002111C-0.0870-0.0997-0.1070-0.0126-0.020012N-0.5186-0.4787-0.49360.03990.025013O-0.3581-0.3504-0.35920.0077-0.001214C0.59130.59260.58590.0012-0.005415N-0.6654-0.6676-0.6643-0.00220.001116C0.50000.46610.4868-0.0339-0.013217O-0.2954-0.3289-0.3173-0.0335-0.021818H0.21510.23230.23100.01710.015919H0.20930.22610.22210.01680.008620H0.20930.22610.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.001124H0.24580.24650.24590.00080.001125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	9	Ν	-0.3651	-0.4070	-0.3885	-0.0419	-0.0234
11C-0.0870-0.0997-0.1070-0.0126-0.020012N-0.5186-0.4787-0.49360.03990.025013O-0.3581-0.3504-0.35920.0077-0.001214C0.59130.59260.58590.0012-0.005415N-0.6654-0.6676-0.6643-0.00220.001116C0.50000.46610.4868-0.0339-0.013217O-0.2954-0.3289-0.3173-0.0335-0.021818H0.21510.23230.23100.01710.015919H0.21000.21860.21600.00860.006020H0.20930.22610.22210.01680.012821C0.38490.38460.3839-0.0003-0.009922O-0.2311-0.2249-0.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.001125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	10	С	0.4945	0.4920	0.4966	-0.0025	0.0021
12N-0.5186-0.4787-0.49360.03990.025013O-0.3581-0.3504-0.35920.0077-0.001214C0.59130.59260.58590.0012-0.005415N-0.6654-0.6676-0.6643-0.00220.001116C0.50000.46610.4868-0.0339-0.013217O-0.2954-0.3289-0.3173-0.0335-0.021818H0.21510.23230.23100.01710.015919H0.21000.21860.21600.00860.006020H0.20930.22610.22210.01680.012821C0.38490.38460.3839-0.0003-0.009922O-0.2311-0.2249-0.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.001125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	11	С	-0.0870	-0.0997	-0.1070	-0.0126	-0.0200
13O-0.3581-0.3504-0.35920.0077-0.001214C0.59130.59260.58590.0012-0.005415N-0.6654-0.6676-0.6643-0.00220.001116C0.50000.46610.4868-0.0339-0.013217O-0.2954-0.3289-0.3173-0.0335-0.021818H0.21510.23230.23100.01710.015919H0.21000.21860.21600.00860.006020H0.20930.22610.22210.01680.012821C0.38490.38460.3839-0.0003-0.009922O-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.001125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	12	Ν	-0.5186	-0.4787	-0.4936	0.0399	0.0250
14C0.59130.59260.58590.0012-0.005415N-0.6654-0.6676-0.6643-0.00220.001116C0.50000.46610.4868-0.0339-0.013217O-0.2954-0.3289-0.3173-0.0335-0.021818H0.21510.23230.23100.01710.015919H0.21000.21860.21600.00860.006020H0.20930.22610.22210.01680.012821C0.38490.38460.3839-0.0003-0.000922O-0.2311-0.2249-0.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.001125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	13	0	-0.3581	-0.3504	-0.3592	0.0077	-0.0012
15N-0.6654-0.6676-0.6643-0.00220.001116C0.50000.46610.4868-0.0339-0.013217O-0.2954-0.3289-0.3173-0.0335-0.021818H0.21510.23230.23100.01710.015919H0.21000.21860.21600.00860.006020H0.20930.22610.22210.01680.012821C0.38490.38460.3839-0.0003-0.000922O-0.2311-0.2249-0.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.001125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	14	С	0.5913	0.5926	0.5859	0.0012	-0.0054
16C0.50000.46610.4868-0.0339-0.013217O-0.2954-0.3289-0.3173-0.0335-0.021818H0.21510.23230.23100.01710.015919H0.21000.21860.21600.00860.006020H0.20930.22610.22210.01680.012821C0.38490.38460.3839-0.0003-0.000922O-0.2311-0.2249-0.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.001225H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	15	Ν	-0.6654	-0.6676	-0.6643	-0.0022	0.0011
17O-0.2954-0.3289-0.3173-0.0335-0.021818H0.21510.23230.23100.01710.015919H0.21000.21860.21600.00860.006020H0.20930.22610.22210.01680.012821C0.38490.38460.3839-0.0003-0.000922O-0.2311-0.2249-0.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.000125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	16	С	0.5000	0.4661	0.4868	-0.0339	-0.0132
18 H 0.2151 0.2323 0.2310 0.0171 0.0159 19 H 0.2100 0.2186 0.2160 0.0086 0.0060 20 H 0.2093 0.2261 0.2221 0.0168 0.0128 21 C 0.3849 0.3846 0.3839 -0.0003 -0.0009 22 O -0.2311 -0.2249 -0.2282 0.0062 0.0029 23 C -0.6746 -0.6738 -0.6735 0.0008 0.0011 24 H 0.2458 0.2465 0.2459 0.0008 0.0001 25 H 0.2563 0.2564 0.2575 0.0001 0.0012 26 H 0.2425 0.2466 0.2431 0.0041 0.0007 27 H 0.3759 0.3714 0.3723 -0.0044 -0.0035	17	0	-0.2954	-0.3289	-0.3173	-0.0335	-0.0218
19H0.21000.21860.21600.00860.006020H0.20930.22610.22210.01680.012821C0.38490.38460.3839-0.0003-0.000922O-0.2311-0.2249-0.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.001125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	18	Н	0.2151	0.2323	0.2310	0.0171	0.0159
20H0.20930.22610.22210.01680.012821C0.38490.38460.3839-0.0003-0.000922O-0.2311-0.2249-0.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.000125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	19	Н	0.2100	0.2186	0.2160	0.0086	0.0060
21C0.38490.38460.3839-0.0003-0.000922O-0.2311-0.2249-0.22820.00620.002923C-0.6746-0.6738-0.67350.00080.001124H0.24580.24650.24590.00080.000125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	20	Н	0.2093	0.2261	0.2221	0.0168	0.0128
22 O -0.2311 -0.2249 -0.2282 0.0062 0.0029 23 C -0.6746 -0.6738 -0.6735 0.0008 0.0011 24 H 0.2458 0.2465 0.2459 0.0008 0.0001 25 H 0.2563 0.2564 0.2575 0.0001 0.0012 26 H 0.2425 0.2466 0.2431 0.0041 0.0007 27 H 0.3759 0.3714 0.3723 -0.0044 -0.0035	21	С	0.3849	0.3846	0.3839	-0.0003	-0.0009
23 C -0.6746 -0.6738 -0.6735 0.0008 0.0011 24 H 0.2458 0.2465 0.2459 0.0008 0.0001 25 H 0.2563 0.2564 0.2575 0.0001 0.0012 26 H 0.2425 0.2466 0.2431 0.0041 0.0007 27 H 0.3759 0.3714 0.3723 -0.0044 -0.0035	22	0	-0.2311	-0.2249	-0.2282	0.0062	0.0029
24H0.24580.24650.24590.00080.000125H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	23	С	-0.6746	-0.6738	-0.6735	0.0008	0.0011
25H0.25630.25640.25750.00010.001226H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	24	Н	0.2458	0.2465	0.2459	0.0008	0.0001
26H0.24250.24660.24310.00410.000727H0.37590.37140.3723-0.0044-0.0035	25	Н	0.2563	0.2564	0.2575	0.0001	0.0012
27 H 0.3759 0.3714 0.3723 -0.0044 -0.0035	26	Н	0.2425	0.2466	0.2431	0.0041	0.0007
	27	Н	0.3759	0.3714	0.3723	-0.0044	-0.0035

^a Numbers are consist with the optimized structure of Figure S14. ^b The difference of Mulliken charges between S_1 and S_0 . ^c The difference of Mulliken charges between T_1 and S_0 .

		transition of TLS.		
	$E_{reorg}(tol)/cm^{-1}$	Mode	Freq/cm ⁻¹	E _{reorg} /cm ⁻¹
Az	2187.52	11	197.25	157.88
		16	416.36	59.06
		24	618.44	347.41
		43	1173.71	54.45
		44	1241.18	205.73
		46	1277.65	146.92
		49	1382.99	75.07
		53	1467.04	73.71
		56	1598.96	506.54
		57	1611.11	118.82
		58	1662.09	112.31
AAz1	2197.18	15	220.18	130.55
		30	622.23	341.63
		53	1185.78	55.82
		54	1244.52	229.34
		56	1281.47	114.27
		61	1401.45	55.49
		63	1458.25	51.80
		69	1598.20	557.33
		70	1659.17	129.96
		72	1780.40	52.19
		73	1862.58	7.31
		74	3052.43	1.50
AAz3	4804.81	7	27.12	65.79
		15	213.62	108.53
		17	261.85	53.98
		29	591.19	79.25
		31	618.38	635.10
		32	668.28	205.96
		42	913.24	56.77
		43	939.10	60.16
		45	1002.65	489.59
		54	1241.62	279.35
		56	1276.48	126.36
		59	1383.65	62.32
		63	1459.63	132.57
		68	1597.41	433.61
		69	1611.55	161.57
		70	1662.24	107.88
		71	1731.54	75.43
		72	1772.57	75.14
		73	1864.22	789.02
	1000 00	74	3052.43	230.81
AAz13	4338.99	8	28.76	57.07
		19	233.42	84.54
		36	605.48	180.99

Table S15. The contribution of vibrational normal modes to reorganization energy for $S_1 \rightarrow S_0$
transition of AZs.

		37	617.21	537.75
		42	763.11	134.35
		50	961.84	86.44
		52	1000.80	296.84
		53	1011.05	108.96
		62	1186.90	52.12
		64	1245.07	301.49
		66	1280.98	100.68
		73	1451.09	112.95
		80	1590.08	81.49
		81	1598.75	505.73
		82	1658.89	121.48
		84	1761.12	112.41
		85	1862.80	199.58
		86	1870.01	418.44
		87	3052.27	215.78
AAz13-1	3954.89	19	233.67	84.81
		36	605.71	64.63
		37	619.07	559.42
		42	762.77	134.32
		50	961.26	77.38
		52	1000.84	239.22
		53	1011.28	69.64
		62	1186.88	51.34
		6 <u>4</u>	1245 34	302.01
		66	1280.99	99.78
		73	1450.86	110.10
		<i>80</i>	1520.07	02.20
		80	1509.74	512.44
		81	1598.74	512.44
		82	1658.88	120.49
		84	1761.19	107.74
		85	1862.58	123.3
		86	1867.79	379.14
		88	3052.66	173.27
AzMe	2032.19	12	187.69	112.20
		19	408.50	59.96
		26	621.75	264.33
		47	1184.77	86.34
		49	1259.65	103.15
		51	1296.54	205.07
		53	1385.92	76.37
		55	1403.67	80.87
		64	1599.52	496.58
		65	1658.97	117.75
AAz3Me	3160.394	7	36.14	70.92
		16	201.09	90.66
		32	604.16	68.26

33	617.04	414.41
43	862.84	102.40
47	998.95	81.41
48	1003.82	142.77
58	1232.80	78.95
59	1258.43	154.56
61	1294.15	213.17
64	1387.07	76.10
76	1599.25	472.90
77	1658.98	109.07
79	1759.46	67.13
80	1863.49	282.65
81	3052.89	99.20

Figure S15. The E_{reorg} vectorized representation of atomic displacement for the corresponding vibration normal modes of AAz13-1 $S_1 \rightarrow S_0$ transition.

		transitions of AZS.		
	HR(tol)	Mode	Freq/cm ⁻¹	HR
Az	2.7006	11	200.14	0.8002
		22	585.53	0.4225
		16	416.11	0.1413
		24	576.00	0.1686
		26	663.99	0.0773
		44	1194.44	0.1319
		48	1344.67	0.1291
		51	1422.27	0.0601
		53	1438.01	0.0780
		56	1492.71	0.1535
		57	1526.72	0.1044
		59	1705.62	0.1014
AAz1	3.1307	7	46.09	0.1927
		9	69.13	0.0980
		11	118.01	0.2410
		15	215.66	0.5879
		28	572.20	0.1844
		29	617.10	0.1147
		30	580.05	0.2028
		32	646.70	0.1488
		54	1194.89	0.1153
		62	1408.81	0.0994
		69	1486.86	0.2560
		72	1710.58	0.0915
AAz3	9.4948	7	50.07	2.4406
		8	41.16	1.5537
		9	71.57	0.3956
		15	228.44	0.8339
		22	434.10	0.1533
		26	546.17	0.1750
		28	566.81	0.3964
		31	580.17	0.1899
		32	683.03	0.1759
		33	662.36	0.3015
		43	941.26	0.1043
		45	988.70	0.4737
		53	1187.39	0.1440
		63	1433.51	0.1305
		68	1492.10	0.1591
		71	1675.79	0.1501
		73	1844.09	0.5386
AAz13	8.4153	7	45.10	1.1671
		8	33.87	1.4788
		9	49.86	0.4996
		11	76.61	0.5458
		13	116.58	0.2421

Table S16. The contribution of vibrational normal modes to Huang-Rhys factors for $S_1 \rightarrow S_0$ transitions of AZs.

-			19	242.96	0.7001
			27	434.78	0.1180
			34	560.57	0.3426
			37	579.30	0.1776
			38	631.95	0.4721
			50	959.88	0.1657
			52	995.38	0.3616
			63	1187.42	0.1122
			81	1487.09	0.1770
			83	1676.89	0.1223
			85	1847.04	0.4088
	AAz13-1	7.4815	7	33.47	1.9583
			8	48.84	0.6023
			10	57.9	0.4920
			13	116.81	0.2315
			19	241.78	0.6469
			34	560 99	0 3603
			37	579.66	0.1204
			38	630.01	0.3704
			50	050.02	0.3704
			50	939.02	0.1401
			52	996.78	0.1187
			53	996.14	0.2187
			63	1187.52	0.1108
			81	1487.9	0.2102
			83	1676.62	0.1184
			86	1846.92	0.3420
	AzMe	2.4047	12	189.86	0.6035
			15	317.99	0.0973
			19	410.64	0.1480
			25	611.87	0.1164
			26	576.55	0.2678
			28	658.82	0.0989
			51	1201.21	0.1427
			54	1396.32	0.1535
			58	1449.36	0.1027
			64	1487.95	0.1181
			67	1707.96	0.0977
	AAz3Me	5.4036	7	31.18	1.4086
			8	40.83	0.4757
			16	209.33	0.5983
			20	321.87	0.1527
			31	554.97	0.3058
			34	636.16	0.3769
			48	1005.78	0.2952
			61	1199.41	0.0998
			70	1449.53	0.0951
-			78	16/6.0/	0.1195

Figure S16. Decomposition of calculated Huang-Rhys factors (HRs) to vibrational normal modes of AAz13-1 for $S_1 \rightarrow S_0$ transition.

	S_0	\mathbf{S}_1	$S_1 \rightarrow S_0$
L(N1-C10a)	1.38	1.36	-0.02
L(N1-C2)	1.38	1.40	0.02
L(C2-N3)	1.39	1.37	-0.02
L(N3-C4)	1.39	1.42	0.03
D(H-N1-C10a-C4a)	-179.97	179.99	
D(H-N1-C2-N3)	179.98	-179.98	
D(C4a-C10a-N1-C2)	0.01	-0.01	0.01
D(C10a)N1-C2-N3)	-0.01	0.02	-0.01
D(H-N3-C4-C4a)	180.00	-179.99	
D(H-N3-C2-N1)	-179.99	179.98	
D(N1-C2-N3-C4)	0.00	-0.02	0.00
D(C4a-C4-N3-C2)	0.01	0.01	0.01

 Table S17. Bond Length (Å) and Dihedral Angle () of Az calculated at B3LYP/6-311g(d) level.

	S ₀	S_1	$S_1 \rightarrow S_0$
L(N1-C10a)	1.39	1.37	-0.02
L(N1-C2)	1.38	1.41	0.03
L(C2-N3)	1.39	1.36	-0.03
L(N3-C4)	1.39	1.42	0.03
D(C-N1-C10a-C4a)	176.03	175.86	-0.17
D(C-N1-C2-N3)	-176.60	-176.39	0.21
D(O-C-N1-C10a)	-82.64	-89.26	-6.62
D(O-C-N1-C2)	95.14	88.60	-6.54
D(C4a-C10a-N1-C2)	-1.58	-1.82	-0.24
D(C10a)N1-C2-N3)	1.07	1.36	0.29
D(H-N3-C4-C4a)	179.70	179.34	-0.37
D(H-N3-C2-N1)	179.53	-179.97	
D(N1-C2-N3-C4)	0.42	-0.18	-0.59
D(C4a-C4-N3-C2)	-1.20	-0.46	0.73

 Table S18. Bond Length (Å) and Dihedral Angle (⁹) of AAz1 calculated at B3LYP/6-311g(d) level.

	S_0	S ₁	$S_1 \rightarrow S_0$
L(N1-C10a)	1.38	1.36	-0.02
L(N1-C2)	1.38	1.40	0.02
L(C2-N3)	1.40	1.38	-0.02
L(N3-C4)	1.40	1.44	0.04
D(H-N1-C10a-C4a)	179.37	179.43	0.06
D(H-N1-C2-N3)	179.69	-179.56	
D(C4a-C10a-N1-C2)	-0.46	1.02	1.48
D(C10a-N1-C2-N3)	-0.48	-1.16	-0.68
D(C-N3-C4-C4a)	177.05	178.41	1.36
D(C-N3-C2-N1)	-177.21	-177.07	0.14
D(O-C-N3-C2)	91.08	66.60	-24.48
D(O-C-N3-C4)	-88.06	-110.53	-22.47
D(N1-C2-N3-C4)	1.83	-0.24	-2.06
D(C4a-C4-N3-C2)	-1.97	1.58	3.56

 Table S19. Bond Length (Å) and Dihedral Angle (⁹) of AAz3 calculated at B3LYP/6-311g(d) level.

	S ₀	S ₁	$S_1 \rightarrow S_0$
L(N1-C10a)	1.39	1.37	-0.02
L(N1-C2)	1.38	1.41	0.03
L(C2-N3)	1.39	1.37	-0.02
L(N3-C4)	1.40	1.44	0.04
D(C-N1-C10a-C4a)	176.81	176.28	-0.53
D(C-N1-C2-N3)	-176.30	-176.36	-0.06
D(O-C-N1-C10a)	-83.67	-90.34	-6.67
D(O-C-N1-C2)	94.31	88.45	-5.86
D(C4a-C10a-N1-C2)	-1.03	-2.41	-1.38
D(C10a-N1-C2-N3)	1.58	2.36	0.78
D(C-N3-C4-C4a)	-177.29	-179.08	-1.79
D(C-N3-C2-N1)	176.61	176.98	0.37
D(O-C-N3-C2)	-89.19	-67.72	21.47
D(O-C-N3-C4)	89.16	109.51	20.35
D(N1-C2-N3-C4)	-1.54	0.04	1.58
D(C4a-C4-N3-C2)	0.85	-2.14	-2.99

 Table S20. Bond Length (Å) and Dihedral Angle (^o) of AAz13 calculated at B3LYP/6-311g(d) level.

	S ₀	S ₁	$S_1 \rightarrow S_0$
L(N1-C10a)	1.39	1.37	-0.02
L(N1-C2)	1.38	1.41	0.03
L(C2-N3)	1.39	1.37	-0.02
L(N3-C4)	1.40	1.44	0.04
D(C-N1-C10a-C4a)	174.92	174.97	0.05
D(C-N1-C2-N3)	-176.37	-175.68	0.69
D(O-C-N1-C10a)	-80.89	-87.10	-6.21
D(O-C-N1-C2)	95.92	89.36	-6.56
D(C4a-C10a-N1-C2)	-1.66	-1.17	0.49
D(C10a-N1-C2-N3)	-1.66	-1.17	0.49
D(C-N3-C4-C4a)	176.69	177.17	0.48
D(C-N3-C2-N1)	-177.31	-176.91	0.40
D(O-C-N3-C2)	89.49	68.45	-21.03
D(O-C-N3-C4)	-89.96	-108.50	-18.54
D(N1-C2-N3-C4)	2.08	-0.27	-2.34
D(C4a-C4-N3-C2)	-2.69	0.53	3.22

Table S21. Bond Length (Å) and Dihedral Angle ([°]) of AAz13-1 calculated at B3LYP/6-311g(d) level

	S ₀	S ₁	$S_1 \rightarrow S_0$
L(N1-C10a)	1.39	1.37	-0.01
L(N1-C2)	1.39	1.42	0.04
L(C2-N3)	1.39	1.36	-0.03
L(N3-C4)	1.39	1.42	0.03
D(C-N1-C10a-C4a)	179.96	-179.99	_
D(C-N1-C2-N3)	-180.00	179.99	_
D(C4a-C10a-N1-C2)	-0.03	0.02	0.05
D(C10a)N1-C2-N3)	0.00	-0.01	-0.01
D(H-N3-C4-C4a)	-180.00	-179.98	—
D(H-N3-C2-N1)	-179.98	180.00	—
D(N1-C2-N3-C4)	0.02	-0.01	-0.03
D(C4a-C4-N3-C2)	0.00	0.03	0.02

 Table S22. Bond Length (Å) and Dihedral Angle () of AzMe calculated at B3LYP/6-311g(d) level.

	\mathbf{S}_0	S_1	$S_1 \rightarrow S_0$
L(N1-C10a)	1.39	1.37	-0.02
L(N1-C2)	1.38	1.42	0.04
L(C2-N3)	1.40	1.37	-0.03
L(N3-C4)	1.39	1.43	0.04
D(C-N1-C10a-C4a)	179.37	179.71	0.34
D(C-N1-C2-N3)	179.54	179.49	-0.05
D(C4a-C10a-N1-C2)	-0.44	0.77	1.20
D(C10a)N1-C2-N3)	-0.65	-1.54	-0.89
D(C-N3-C4-C4a)	177.10	177.81	0.72
D(C-N3-C2-N1)	-177.15	-176.59	0.57
D(O-C-N3-C2)	91.53	72.72	-18.81
D(O-C-N3-C4)	-87.82	-105.19	-17.37
D(N1-C2-N3-C4)	2.11	1.07	-1.04
D(C4a-C4-N3-C2)	-2.16	0.15	2.31

Table S23. Bond Length (Å) and Dihedral Angle ([°]) of AAz3Me calculated at B3LYP/6-311g(d) level

	E _{reorg} (tol)/cm ⁻¹	Mode	Freq/cm ⁻¹	E _{reorg} /cm ⁻¹
Az	3281.16	11	197.25	159.71
		16	416.36	63.92
		24	618.44	281.81
		43	1173.71	60.48
		44	1241.18	154.69
		49	1382.99	536.26
		50	1402.71	57.46
		52	1455.56	79.69
		53	1467.04	161.12
		56	1598.96	671.77
		57	1611.11	685.48
AAz1	3281.49	15	220.18	113.08
		30	622.23	276.19
		53	1185.78	70.24
		54	1244.52	133.68
		55	1274	57.25
		58	1379.66	204.32
		59	1385.77	287.99
		61	1401.45	121.22
		62	1439.43	75.09
		63	1458.25	194.27
		67	1532.37	76.47
		69	1598.2	1301.73
		70	1659.17	84.11
AAz3	3352.83	15	213.62	127.54
		28	565.14	67.34
		31	618.38	295.33
		52	1172.71	50.47
		54	1241.62	179.17
		59	1383.65	530.46
		63	1459.63	268.31
		68	1597.41	595.14
		69	1611.55	765
AAz13	3357.15	19	233.42	91.99
		34	564.68	54.73
		37	617.21	286.59
		62	1186.9	60.57
		64	1245.07	166.38
		68	1381.74	269.77
		69	1385.18	208.75
		73	1451.09	303.44
		79	1533.17	58.71
		81	1598.75	1314.67
		82	1658.89	78.3
AAz13-1	3329.35	19	233.67	89.96
		34	566.84	73.01

Table S24. The contribution of vibrational normal mode to reorganization energy for $T_1 \rightarrow S_0$
transition of AZs.

37 619.07 267 62 1186.88 60.56 64 1245.34 165.85 68 1381.47 241.08 69 1385.07 235.81 72 1401.64 53.53 73 1450.86 303.86 79 1533.13 57.69 81 1598.74 1319.65 82 1658.88 77.37 AzMe 3131.53 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1595.2 875.11 65 1658.97 93.15 564					
62 1186.88 60.56 64 1245.34 165.85 68 1381.47 241.08 69 1385.07 235.81 72 1401.64 53.53 73 1450.86 303.86 79 1533.13 57.69 81 1598.74 1319.65 82 1658.88 77.37 AzMe 3131.53 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 64 1599.52 875.11 65 1658.97 93.15 16			37	619.07	267
64 1245.34 165.85 68 1381.47 241.08 69 1385.07 235.81 72 1401.64 53.53 73 1450.86 303.86 79 1533.13 57.69 81 1598.74 1319.65 82 1658.88 77.37 AzMe 3131.53 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 16 201.09 87.74 31 564 65.05 53 616			62	1186.88	60.56
68 1381.47 241.08 69 1385.07 235.81 72 1401.64 53.53 73 1450.86 303.86 79 1533.13 57.69 81 1598.74 1319.65 82 1658.88 77.37 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 125.28 55.11 65 1658.97 93.15 64 1599.52 875.11 65 1658.97 93.15 64 159.52 875.11 65 1658.97 93.15 71			64	1245.34	165.85
69 1385.07 235.81 72 1401.64 53.53 73 1450.86 303.86 79 1533.13 57.69 81 1598.74 1319.65 82 1658.88 77.37 AzMe 3131.53 12 187.69 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 31 564 65.05 33 617.04 194.82 58 1228.43 105.99			68	1381.47	241.08
72 1401.64 53.53 73 1450.86 303.86 79 1533.13 57.69 81 1598.74 1319.65 82 1658.88 77.37 AzMe 3131.53 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 31 564 65.05 31 564 201.09 87.74 31 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34			69	1385.07	235.81
AzMe 3131.53 1450.86 303.86 79 1533.13 57.69 81 1598.74 1319.65 82 1658.88 77.37 AzMe 3131.53 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 65 156.95 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 <			72	1401.64	53.53
79 1533.13 57.69 81 1598.74 1319.65 82 1658.88 77.37 AzMe 3131.53 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 159.52 875.11 64 1599.52 875.11 65 1658.97 93.15 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1487.07 328.34 66 1406.44 89.38 67			73	1450.86	303.86
AzMe 3131.53 15 1319.65 81 1598.74 1319.65 82 1658.88 77.37 AzMe 3131.53 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38			79	1533.13	57 69
AzMe 3131.53 12 1658.88 77.37 AzMe 3131.53 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 10			9 1	1508 74	1210.65
AzMe 3131.53 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 159.25 1108.31 77 165			81	1598.74	1319.03
AZMe 5151.33 12 187.69 110.87 19 408.5 56.89 26 621.75 262.66 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43		2121 52	82 12	1038.88	110.97
AAz3Me 3158.35 AAz3Me 3158.35	Azivie	3131.33	12	187.09	56.80
AAz3Me 3158.35 16 201.03 202.00 47 1184.77 116.03 49 1259.65 71.36 50 1274.3 62.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			19	408.5	262.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			20	021.75	202.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			47	1104.77	71.36
50 12/4.3 02.02 53 1385.92 365.25 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 AAz3Me 3158.35 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			49 50	1274.3	62.02
53 1300.92 500.23 54 1387.17 132.99 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 64 1599.52 87.74 65 1658.97 93.15 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			53	1274.5	365.25
54 130.11 132.95 55 1403.67 169.75 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 65 1658.97 93.15 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			54	1387.17	132.99
56 1438.37 111.84 56 1438.37 111.84 58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 64 1599.52 877.4 65 1658.97 93.15 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			55	1403 67	169 75
58 1484.85 112.26 63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 64 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			56	1438.37	111.84
63 1591.51 285.31 64 1599.52 875.11 65 1658.97 93.15 AAz3Me 3158.35 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			58	1484.85	112.26
64 1599.52 875.11 65 1658.97 93.15 AAz3Me 3158.35 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			63	1591.51	285.31
AAz3Me 3158.35 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			64	1599.52	875.11
AAz3Me 3158.35 16 201.09 87.74 31 564 65.05 33 617.04 194.82 58 1232.8 56.18 59 1258.43 105.99 63 1386.08 183.03 64 1387.07 328.34 66 1406.44 89.38 67 1438.94 142.44 70 1481.35 107.68 75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			65	1658.97	93.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AAz3Me	3158.35	16	201.09	87.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			31	564	65.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			33	617.04	194.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			58	1232.8	56.18
631386.08183.03641387.07328.34661406.4489.38671438.94142.44701481.35107.68751589.6787.02761599.251108.31771658.9886.43			59	1258.43	105.99
641387.07328.34661406.4489.38671438.94142.44701481.35107.68751589.6787.02761599.251108.31771658.9886.43			63	1386.08	183.03
661406.4489.38671438.94142.44701481.35107.68751589.6787.02761599.251108.31771658.9886.43			64	1387.07	328.34
671438.94142.44701481.35107.68751589.6787.02761599.251108.31771658.9886.43			66	1406.44	89.38
701481.35107.68751589.6787.02761599.251108.31771658.9886.43			67	1438.94	142.44
75 1589.67 87.02 76 1599.25 1108.31 77 1658.98 86.43			70	1481.35	107.68
76 1599.25 1108.31 77 1658.98 86.43			75	1589.67	87.02
77 1658.98 86.43			76	1599.25	1108.31
			77	1658.98	86.43

Figure S17. The E_{reorg} vectorized representation of atomic displacement for the corresponding vibration normal modes of AAz13-1 T₁ \rightarrow S₀ transition.

		transition of AZS.	1	
	HR(tol)	Mode	Freq/cm ⁻¹	HR
Az	3.2467	11	193.33	0.7656
		14	329.64	0.0712
		16	417.54	0.1530
		24	594.67	0.4881
		43	1192.72	0.0950
		47	1279.61	0.0527
		48	1304.34	0.3341
		49	1380.47	0.1547
		53	1488.96	0.1444
		56	1580.80	0.3669
		57	1359.35	0.2260
AAz1	3.3473	7	37.36	0.0532
		11	117.28	0.3174
		15	210.93	0.4226
		19	328.78	0.0668
		26	522.99	0.0514
		29	591.54	0.2599
		30	609.64	0.1974
		39	780.15	0.0537
		53	1196.49	0.0750
		54	1226.87	0.0585
		57	1293.36	0.0617
		59	1341.65	0.1021
		63	1367.29	0.6737
		67	1522.19	0.0744
		69	1581.23	0.3621
AAz3	3.6190	7	19.80	0.3075
		11	129.56	0.1757
		15	210.15	0.5441
		19	333.30	0.0776
		22	439.52	0.0687
		28	552.18	0.1733
		29	584.29	0.1119
		31	597.37	0.2793
		53	1185.19	0.0923
		56	1307.68	0.3574
		58	1355.11	0.1535
		61	1377.35	0.2070
		63	1484.67	0.1364
		69	1585.41	0.3720
		71	1698.38	0.0514
AAz13	3.7539	7	38.12	0.1038
		8	14.81	0.2298
		13	115.14	0.3481
		19	229.99	0.3832
		24	335.96	0.0867

Table S25. The contribution of vibrational normal modes of Huang-Rhys factors for T_1 -S0transition of AZs.

		34	553.34	0.1426
		36	602.31	0.1052
		37	592.19	0.1949
		38	626.98	0.0929
		67	1294.57	0.0516
		69	1338.49	0.1238
		73	1365.61	0.6300
		79	1521.94	0.0631
		80	1192.47	0.0972
		81	1584.00	0.3657
AAz13-1	3.7526	7	24.93	0.3354
		13	115.78	0.3165
		19	230.15	0.3466
		34	553.98	0 1447
		36	590.17	0.1957
		30	604.45	0.1017
		57	1229.55	0.1017
		69	1558.55	0.1216
		73	1365.31	0.6359
		81	1584.56	0.3688
AzMe	2.9922	12	184.09	0.5626
		15	316.46	0.1454
		19	413.57	0.1422
		23	510.37	0.0535
		25	585.49	0.1297
		26	606.84	0.2863
		40	954.10	0.0534
		47	1188.27	0.1285
		49	1236.29	0.0847
		54 59	1348.41	0.1204
		53	1499.08	0.0331
		03 64	1508.45	0.3380
A A 73Me	3 1/17	7	33 30	0.2802
144251010	5.1417	13	129 35	0.1030
		16	127.55	0.3925
		20	316.93	0.1302
		24	435.14	0.0543
		31	553.60	0.1385
		32	584.16	0.1334
		33	603.17	0.1844
		56	1179.92	0.1293
		58	1242.98	0.0994
		63	1343.42	0.1395
		70	1494.48	0.0579
		75	1367.50	0.5394
		76	1578.05	0.3072

Figure S18. Decomposition of calculated Huang-Rhys factors (HRs) to vibrational normal modes of AAz13-1 for $T_1 \rightarrow S_0$ transition.

H _{SO} /cm ⁻¹	$S_1 \rightarrow T_3$	$S_1 \rightarrow T_2$	$S_1 \rightarrow T_1$	$T_3 \rightarrow S_0$	$T_2 \rightarrow S_0$	$T_1 \rightarrow S_0$
Az	9.53	1.24×10^{-1}	1.55×10 ⁻¹	1.04×10^{-1}	8.52	1.71×10^{-1}
AzMe	8.63	1.44×10^{-1}	1.95×10^{-1}	1.35×10 ⁻¹	8.10	2.13×10 ⁻¹
AAz13	8.57	1.72×10^{-1}	3.40×10 ⁻¹	9.18×10 ⁻¹	7.83	2.82×10 ⁻¹
AAz13-1	8.53	3.03×10 ⁻¹	1.38×10 ⁻¹	1.03	7.75	5.14×10^{-1}
AAz3	9.11	9.93×10 ⁻²	2.44×10 ⁻¹	2.79×10^{-1}	8.34	2.28×10^{-1}
AAz3Me	8.27	9.87×10 ⁻²	2.49×10 ⁻¹	7.85×10^{-1}	7.90	2.65×10 ⁻¹
AAz1	8.78	2.00×10 ⁻¹	1.89×10^{-1}	1.10	7.87	4.16×10 ⁻¹

References:

- 1. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 2. C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 3. R. C. Binning and L. A. Curtiss, J. Comput. Chem., 1990, 11, 1206-1216.
- M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, *J. Chem. Phys.*, 1982, **77**, 3654-3665.
- 5. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss, *J. Comput. Chem.*, 2001, **22**, 976-984.
- 6. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 7. F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16 A 01*, 2016.
- O. Vahtras, H. Agren, P. Jorgensen, H. J. A. Jensen, T. Helgaker and J. Olsen, J. Chem. Phys., 1992, 97, 9178-9187.
- 10. H. Hettema, H. J. A. Jensen, P. Jorgensen and J. Olsen, J. Chem. Phys., 1992, 97, 1174-1190.
- H. Agren, O. Vahtras, H. Koch, P. Jorgensen and T. Helgaker, J. Chem. Phys., 1993, 98, 6417-6423.
- 12. J. Olsen, D. L. Yeager and P. Jorgensen, J. Chem. Phys., 1989, 91, 381-388.
- 13. P. Jorgensen, H. J. A. Jensen and J. Olsen, J. Chem. Phys., 1988, 89, 3654-3661.
- K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekstrom, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hattig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenaes, S. Host, I. M. Hoyvik, M. F. Iozzi, B. Jansik, H. J. A. Jensen, D. Jonsson, P. Jorgensen, J. Kauczor, S. Kirpekar, T. Kjrgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Salek, C. C. M. Samson, A. S. de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thogersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski and H. Agren, *Wiley Interdiscip. Rev.-Comput. Mol. Sci.*, 2014, **4**, 269-284.
- 15. Q. Peng, Y. P. Yi, Z. G. Shuai and J. S. Shao, J. Chem. Phys., 2007, 126, 114302.
- 16. Q. Peng, Y. P. Yi, Z. G. Shuai and J. S. Shao, J. Am. Chem. Soc., 2007, 129, 9333-9339.
- 17. Y. L. Niu, Q. A. Peng, C. M. Deng, X. Gao and Z. G. Shuai, J. Phys. Chem. A, 2010, 114,

7817-7831.

- 18. Y. Niu, Q. Peng and Z. Shuai, *Sci. China Ser. B-Chem.*, 2008, **51**, 1153-1158.
- Q. Peng, Y. L. Niu, Q. H. Shi, X. Gao and Z. G. Shuai, J. Chem. Theory Comput., 2013, 9, 1132-1143.
- 20. Z. G. Shuai, *Chin. J. Chem.*, 2020, **38**, 1223-1232.
- Y. L. Niu, W. Q. Li, Q. Peng, H. Geng, Y. P. Yi, L. J. Wang, G. J. Nan, D. Wang and Z. G. Shuai, *Mol. Phys.*, 2018, **116**, 1078-1090.
- 22. Z. G. Shuai and Q. Peng, Phys. Rep.-Rev. Sec. Phys. Lett., 2014, 537, 123-156.
- 23. Z. G. Shuai and Q. Peng, Natl. Sci. Rev., 2017, 4, 224-239.
- 24. Y. Niu, Q. Peng, C. Deng, X. Gao and Z. Shuai, J. Phys. Chem. A, 2010, 114, 7817-7831.
- 25. T. Lu and F. W. Chen, J. Comput. Chem., 2012, 33, 580-592.
- 26. S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117-129.
- 27. R. Cammi and B. Mennucci, J. Chem. Phys., 1999, 110, 9877-9886.
- 28. J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999-3093.