Supporting Information

The Curious Case of Ion Migration in Solid-state and Liquid Electrolyte-based Perovskite Devices: Unveiling the Role of Charge Accumulation and Extraction at the Interfaces

Priya Srivastava^{†, ^}, Ramesh Kumar^{†, ^}, Monojit Bag^{†, ‡, *}

[†] Advanced Research in Electrochemical Impedance Spectroscopy Laboratory (AREIS), Indian Institute of Technology Roorkee, Roorkee 247667, India

‡ Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India

Corresponding author: monojit.bag@ph.iitr.ac.in

^ These authors contributed equally.

Figure S1: Top-view FESEM image and AFM image of the CH₃NH₃PbBr₃ film.

Figure S2: X-ray diffraction pattern of the CH₃NH₃PbBr₃ film.

Figure S3: Photographs of the S-S and L-E devices. Electrochemical cell was fabricated by placing a PDMS stamp with a hole to hold the electrolyte during the measurement.

Figure S4: Bode plots of the perovskite-based device in solid-state (S-S) (a, b) geometry and liquid-electrolyte (L-E) (c, d) geometry.

Applied Voltage (V)	0	0.2	0.4	0.6	0.8	1
Chi-Sqr	0.000529	0.000413	0.00064	0.000776	0.00055	0.0001
Sum-Sqr	0.10629	0.083031	0.12871	0.156	0.11063	0.020178
R1(+)	2.74E-07	2.74E-07	2.74E-07	2.74E-07	2.74E-07	2.74E-07
R2(+)	683.1	578	624.4	738.4	631.7	778.4
CPE1-T(+)	2.36E-11	2.45E-11	2.19E-11	2.56E-09	2.28E-09	1.68E-11
CPE1-P(X)	1	1	1	0.7	0.7	1
R3(+)	1006	1078	2237	6738	5612	10091
CPE2-T(+)	1.22E-05	1.39E-05	1.03E-05	6.81E-06	7.00E-06	3.30E-06
CPE2-P(X)	0.7	0.7	0.7	0.7	0.7	0.7
R4(+)	282.1	283.2	441	804.3	1082	1828
R5(+)	4.34E+06	5.12E+06	2.01E+06	8.36E+05	4.10E+05	3.41E+05
CPE4-T(+)	3.22E-06	2.56E-06	2.37E-06	1.98E-06	1.64E-06	1.30E-06
CPE4-P(+)	0.84808	0.86431	0.85615	0.84661	0.83661	0.69688
CPE3-T(+)	1.15E-06	1.32E-06	1.48E-06	1.37E-06	1.50E-06	1.21E-06
CPE3-P(+)	0.76531	0.75927	0.7368	0.74103	0.7134	0.68456

Table S1: EEC fitting parameters for LE devices

Applied Bias (V)	0.0	0.2	0.4	0.6	0.8	1.0
Rs (Ω)	29.97	27.59	26.92	24.38	21.78	22.18
R1 (Ω)	95.59	110.2	128.4	162.6	222	227
R2 (Ω)	10266	43564				
R3 (Ω)	86724	11283	20879	9806	6759	6160
R4 (Ω)	44703	5781	3893	787.9	1544	2359
CPE1-T (F)	2.13E-8	2.78E-08	3.52E- 08	5.52E- 08	5.12E- 08	2.30E- 08
CPE1-P	0.90	0.88	0.86	0.82	0.83	0.90
CPE2-T (F)	7.2E-8	3.38E-08				
CPE2-P	1	0.91				
CPE3-T (F)	6.5E-8	1.50E-06	3.58E- 08	3.12E- 08	3.01E- 08	1.73E- 08
CPE3-P	0.86	0.73	0.89	0.90	0.89	0.90
CPE4-T (F)	1.4E-6				7.79E- 05	4.63E- 05
CPE4-P	.80				0.70	0.70
L (H)		2894	1748	312.1		

Table S2: EEC fitting parameters for SS devices

Figure S5. EIS Nyquist experimental data with corresponding fitting of S-S devices at different applied bias.

Figure S6. EIS Nyquist experimental data with corresponding fitting of L-E devices at different applied bias.

Dielectric properties and ionic conductivity

The dielectric properties of the hybrid perovskite devices (S-S, L-E) can be defined in terms of the complex permittivity $\varepsilon(\omega)$.^{2,3}

$$\varepsilon(\omega) = \varepsilon'(\omega) - j\varepsilon''(\omega) \tag{1}$$

Where, $\varepsilon'(\omega)$ is the real part of the complex permittivity and $\varepsilon''(\omega)$ is the imaginary part of the complex permittivity represents the energy loss which can be expressed from the impedance spectra using the following relations:

$$\varepsilon'(\omega) = \frac{Z''}{\omega C_0 \left({Z'}^2 + {Z''}^2 \right)} \tag{2}$$

$$\varepsilon^{\prime\prime}(\omega) = \frac{Z^{\prime}}{\omega C_0 \left(Z^{\prime 2} + Z^{\prime\prime 2} \right)} \tag{3}$$

Where, $C_0 (= \varepsilon_0 A/d)$ is the vacuum capacitance, ε_0 is the free space permittivity, A is the area of the device/electrode and d is the thickness of perovskite film in both S-S and L-E devices.

To elucidate the ion migration in S-S and L-E devices, we have calculated the ionic conductivities by the Jonscher power law (JPL), according to following equation

$$\sigma_{tot.} = \sigma_{dc} + \sigma_{ac} = \sigma_{ele} + A_{ion}\omega^n \tag{7}$$

Where, the frequency-independent first term is electronic dc conductivity (σ_{ele}) arising owing to the electronic contribution in mixed electronic-ionic semiconductors. However, the last term is the ionic conductivity ($\sigma_{ion} = A_{ion}\omega^n$). In case of perovskite devices, the ionic conductivity can be calculated from Jonscher's law via equation $\sigma_{ion} = \varepsilon_0 \varepsilon'' \omega$.

Figure S7: Mott–Schottky plot of the S-S device under dark.

Figure S8: Mott–Schottky plot of the L-E device under dark.

References

- Kumar, R.; Kumar, J.; Srivastava, P.; Moghe, D.; Kabra, D.; Bag, M. Unveiling the Morphology Effect on the Negative Capacitance and Large Ideality Factor in Perovskite Light-Emitting Diodes. *ACS Appl. Mater. Interfaces* 2020, *12* (30), 34265– 34273. https://doi.org/10.1021/acsami.0c04489.
- (2) Kumar, R.; Srivastava, P.; Bag, M. Role of A-Site Cation and X-Site Halide Interactions in Mixed-Cation Mixed-Halide Perovskites for Determining Anomalously High Ideality Factor and the Super-Linear Power Law in AC Ionic Conductivity at

Operating Temperature. *ACS Appl. Electron. Mater.* **2020**, acsaelm.0c00874. https://doi.org/10.1021/acsaelm.0c00874.

- (3) Srivastava, P.; Kumar, R.; Bag, M. Discerning the Role of an A-Site Cation and X-Site Anion for Ion Conductivity Tuning in Hybrid Perovskites by Photoelectrochemical Impedance Spectroscopy. *J. Phys. Chem. C 0* (0), null-null. https://doi.org/10.1021/acs.jpcc.0c09443.
- (4) Srivastava, P.; Bag, M. Elucidating Tuneable Ambipolar Charge Transport and Field Induced Bleaching at the CH3NH3PbI3/Electrolyte Interface. *Phys. Chem. Chem. Phys.* 2020, *22* (19), 11062–11074. https://doi.org/10.1039/d0cp00682c.