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Dynamics of a single Self-Propelled Particle (SPP) in the periodic square obstacle array

Here we explore the motion of a single SPP in an infinite dense medium mimicked by periodic 

square obstacle array.1,2 All interactions, units and equation of motions are set the same as in 

the main text. The lattice constant , hence a barrier of  blocks the motion 𝑎= 1.9𝜎 𝐸𝑏~5.29𝑘𝐵𝑇

of the SPP passing through the middle between two adjacent obstacles as shown in Fig. 2(a).

Fig. S1 Typical single-particle trajectory. (a)  and ; (b)  and . The color 𝐹𝑎= 5 𝐷𝑟= 0.001 𝐹𝑎= 30 𝐷𝑟= 0.001

represents the time sequence of the trajectory (starting from blue).

1. Barrier-hopping dynamics vs. smooth crossing

Propelling force could enhance the transport of SPPs in the dense obstacle array as manifested 

in Fig. 1. When the propelling strength is not large enough, e.g. , thermal activation is 𝐹𝑎= 5

still needed for the SPP to overcome the barrier. Correspondingly, the SPP is temporarily 
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localized or caged by surrounding obstacles and escapes by barrier-hopping process (Fig. 

S1(a)). In contrast, smooth motion is recovered when the propelling strength is very large, e.g. 

 (Fig. S1(b)). 𝐹𝑎= 30

Fig. S2 Mean squared displacement (MSD) of a single SPP in the obstacle array for (a) varied  and 𝐹𝑎

; (b) varied  and . The corresponding time-dependent exponent is shown in (c) and (d).𝐷𝑟= 0.001 𝐷𝑟 𝐹𝑎= 5

2. Mean Squared Displacement (MSD)

 and  are two key parameters characterizing the active motion of a SPP in free space. 𝐹𝑎 𝐷𝑟

Here, we calculate the MSD of a single SPP moving in the obstacle array under various ’s 𝐹𝑎

(Fig. S2(a)) and ’s (Fig. S2(b)). For  in Fig. S2(a), the early part of the MSD 𝐷𝑟 𝐹𝑎 ≤ 10

increases slowly with time, reflecting the caging dynamics. Then the MSD curves upwardly 

and the exponent  ( ) increases (Fig. S2(c)), corresponding to the process of the SPP 𝛼 𝑀𝑆𝐷~𝑡𝛼

escaping the cage. At low propelling strength, e.g.  and ,  reaches the maximum , 𝐹𝑎= 1 2 𝛼 ~1



i.e. the dynamics changes directly from caging at early time to normal diffusion at late time. In 

contrast, an intermediate super-diffusive region (i.e. ) appears, bridging the early caging 𝛼> 1

regime and the late normal diffusive regime, when the propelling strength is moderate (

 in Fig. S2(a) and (c)). For very strong propulsion, e.g.  and , the MSD 5≤ 𝐹𝑎 ≤ 10 𝐹𝑎= 20 30

starts with the super-diffusive dynamics with  approaching  without the caging regime in the 𝛼 2

beginning. Correspondingly, the transport behavior of the SPP becomes smooth (Fig. S1(b)). 

At long time  (i.e. ), all MSD curves recover the normal diffusion behavior 𝑡 ≫ 1 𝐷𝑟 𝑡 ≫ 1000𝜏

.𝛼~1

Similar caging regime and the following super-diffusive and/or normal diffusive regimes 

are observed for the MSD curves under different ’s (Fig. S2(b) and (d)). The super-diffusive 𝐷𝑟

regime disappears at large  (e.g. ), presumably because the time scale of 𝐷𝑟 𝐷𝑟 ≥ 0.05

localization becomes exceeding the time scale for the transition to the normal diffusion.

Fig. S3 Hopping time as a function of (a)  ( ) and (b)  ( ).𝐹𝑎 𝐷𝑟= 0.001 𝐷𝑟 𝐹𝑎= 5

3. Characteristic time scales

In the above, we see the transitions from caging dynamics to super-diffusion and/or to normal 

diffusion of the MSD of a single SPP in the obstacle array. These transitions depend on the 

time scales. In free space, the MSD of an overdamped single SPP shows a transition from 

super-diffusion ( ) at early time to normal diffusion ( ) at late time. The characteristic 𝛼= 2 𝛼= 1



time scale for this transition is the persistence time of propulsion . In the dense obstacle 
1 𝐷𝑟

array (and  in our model), a hopping time (or caging time)  characterizes the time 𝐹𝑎 ≤ 10 𝜏ℎ

scale for the SPP to escape a local cage. If , the MSD curve changes firstly from 
1 𝐷𝑟 ≫ 𝜏ℎ

caging dynamics to super-diffusion around  and then to normal diffusion around . On 𝜏ℎ 1 𝐷𝑟

the contrary, the intermediate super-diffusive regime disappears when  approaches or even 𝜏ℎ

exceeds .
1 𝐷𝑟

We adopt two ways to quantify the hopping time . In one way, we calculate the second 𝜏ℎ

derivative of the log-log MSD curve around the transition from caging dynamics to super- or 

normal diffusion. We denote the time when the second derivative reaches maximum as the 

hopping time . Alternatively, we choose the time when the MSD reaches the square of half 𝜏𝛼ℎ

lattice constant, , as the hopping time . The results are shown in Fig. S3. The theoretical 𝑎2 4 𝜏𝑑ℎ

hopping time based on the Eyring’s model,  with  is also shown for 𝜏𝑒
(𝐸𝑏 ‒ 𝐹𝑎𝐿𝑏) 𝑘𝐵𝑇 𝐿𝑏= 0.45𝜎

comparison. The three hopping times agree well with each other when the persistence time 

 and the propelling strength is moderate, e.g. . 
1 𝐷𝑟> 10 5≤ 𝐹𝑎 ≤ 10

Table S1 Effective temperatures and corresponding hopping times for varied  ( ). 𝐹𝑎 𝐷𝑟= 0.001

𝐹𝑎 1 2 5 8 10 20 30

𝑇𝑣 𝑇

𝜏ℎ 𝜏

1

372

1

372

1.005

362

1.01

351

1.035

305

1.735

30

3.355

6

𝑇𝑈 𝑇

𝜏ℎ 𝜏

0.27

3 × 109

0.29

7 × 108

0.45

5 × 105

0.74

2981

0.98

420

2.1

17

2.5

11

𝑇𝑓𝑟𝑒𝑒 𝑇

𝜏ℎ 𝜏

1.005

362

1.02

332

1.125

193

1.32

88.7

1.5

51.8

3

7.2

5.5

2.93

Table S2 Effective temperatures and corresponding hopping times for varied  ( ).𝐷𝑟 𝐹𝑎= 5



𝐷𝑟 10 ‒ 4 0.0005 0.001 0.005 0.01 0.05 0.1 0.5 1

𝑇𝑣 𝑇

𝜏ℎ 𝜏

1

372

1

372

1.005

362

1.005

362

1.005

362

1.005

362

1.005

362

1.025

322

1.035

304

𝑇𝑈 𝑇

𝜏ℎ 𝜏

0.453

5 × 105

0.453

5 × 105

0.453

5 × 105

0.453

5 × 105

0.452

5 × 105

0.446

6 × 105

0.442

7 × 105

0.412

2 × 106

0.387

4 × 106

𝑇𝑓𝑟𝑒𝑒 𝑇

𝜏ℎ 𝜏

1.125

193

1.125

193

1.125

193

1.125

193

1.125

193

1.124

193

1.124

193

1.119

198

1.114

204

4. Effective temperatures

Researchers favor using the concept of effective temperature to map the nonquilibrium active 

system to a thermal passive one. For example, effective temperatures based on average 

potential energy and average kinetic energy are defined to formulate the mean escape time of 

an active particle in a harmonic trap.3 Motivated by the reference paper,3 we calculate 

statistically, under various conditions, the effective temperatures based on the particle’s 

average kinetic energy ( ) and average potential energy ( ) in the obstacle array. And, for 𝑇𝑣 𝑇𝑈

comparison, we also present the effective temperature of the same SPP in free space ( ), 𝑇𝑓𝑟𝑒𝑒

based on its average kinetic energy. For the Langevin equation with mass term, we have, for a 

free SPP, , with  the propulsion speed and 𝑣 2
𝑓𝑟𝑒𝑒= 𝑣2𝑎 (1 + 𝜏𝑚𝐷𝑟) + 2𝑘𝐵𝑇 𝑚 𝑣𝑎= 𝐹𝑎 𝜁

 the momentum relaxation time. We then obtain the mean hopping times by replacing 𝜏𝑚=𝑚 𝜁

the thermal temperature in the Kramers’ expression by the effective temperatures, i.e. 

. The results are summarized in Table S1 and S2. We see that the impact of 𝜏ℎ= 𝜏𝑒
𝐸𝑏 𝑘𝐵𝑇𝑒𝑓𝑓

propulsion on  is negligible when , and  is even lower than the thermal 𝑇𝑣 𝐹𝑎 ≤ 10 𝑇𝑈

temperature. Correspondingly, we get unreasonably large hopping times. This suggests that the 

effective-temperature description of a SPP transporting in the complex potential landscape of 

a two-dimensional array does not work. More importantly, in the situation of many particles 

and finite obstacle array, the aggregation of SPPs is a purely nonequilibrium dynamic 

phenomenon. We won’t have tight aggregation of particles in the obstacle array in the passive 



thermal picture even if the effective temperature is high and the barrier-hopping dynamics is 

strongly accelerated.

5. Effective propulsion speed

In free space, the (two-dimensional) MSD of an overdamped single SPP follows4

,                     (S1)
𝑀𝑆𝐷= 2𝐷𝑡+

2𝑣2𝑎
𝐷𝑟
[𝑡+ 1

𝐷𝑟
(𝑒 ‒ 𝐷𝑟𝑡 ‒ 1)]

where  is the thermal diffusion constant. We can use this formula to fit the MSD of 𝐷= 𝑘𝐵𝑇 𝜁

a single SPP in the obstacle array at long time limit by replacing  by effective propulsion 𝑣𝑎

speed .5 Figure S4 shows the scaled  as a function of  and . Apparently,  𝑣𝑒𝑓𝑓𝑎 𝑣𝑒𝑓𝑓𝑎 𝑣𝑎 𝐹𝑎 𝐷𝑟 𝑣𝑒𝑓𝑓𝑎

is lower than , which becomes more prominent at smaller  and . Therefore, for many 𝑣𝑎 𝐹𝑎 𝐷𝑟

SPPs in the obstacle array, the slowing down of motion arises not only by particle collisions 

but also enhanced by potential barriers. Such slowing down of motion brings about the 

aggregation or clustering of SPPs around the obstacle array analogous to the phenomenon of 

motility-induced phase separation but happening at lower concentration threshold.

Fig. S4 Scaled effective propulsion speed as a function of (a)  ( ) and (b)  ( ). 𝐹𝑎 𝐷𝑟= 0.001 𝐷𝑟 𝐹𝑎= 5
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