## MEHODS - DETAILS

## Definition of QM and MM regions in QM/MM ONIOM calculations

In the case of S1 and S2 QM part consisted of E316, Y318, H450, E451, H455, E508 and H568 side chains, two zinc ions and six water molecules (see Fig. S1 c), while in the case of S3, E316, H450, E451, H455 and E508 side chains, two zinc ions and seven water molecules were considered as part of the QM layer (Fig. S1 d). In the structure of the complex besides E316, Y318, H450, E451, H455, E508 and H568 side chains, two zinc ions and five water molecules, peptide IVYPW main chain atoms (for proline the whole residue) were also considered as a part of QM layer (Fig. S1 e). The MM part (the rest of the protein) was treated using the AMBER force field (parm96). ${ }^{1}$ To take into account solvation, water molecules from the enzyme first and second solvatation sphere (additional 3229, 3523 and 3362 water molecules in the case of the S1 (and S2), S3 and CPLX1 (and CPLX2), respectively) were considered as a part of the MM layer as well.

## MD simulations details

System minimization was performed in 4 cycles, followed heating, density equilibration and productive MD simulations. In the first cycle of optimization (1500 steps), water molecules were relaxed, while the rest of the system was harmonically restrained with a force constant of $64 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$. In the second cycle ( 2500 steps), a force constant ( $12 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$ ) was applied to the zinc ion and the protein backbone, while the residues coordinated to the zinc ions and E451 were constrained with $64 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$. In the third cycle ( 1500 steps), a force constant to the zinc ion and the protein backbone was reduced to $6 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$, while force on the selected residues was reduced to $12 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$. In the final stage of minimization (1500 step) only the catalytic zinc ion, ZnA , and its coordinating residues were constrained (zinc with $6 \mathrm{kcal} /\left(\mathrm{mol}^{2} \AA^{2}\right)$ and its ligands with $12 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$ ). Minimizations were performed using 470 steps of steepest descent followed by the conjugated gradient for the remaining steps.

The energy optimized system was heated from 0 to 300 K and equilibrated in 5 stages. In the first stage, system was heated form 0 K to 300 K during 10 ps using NVT ensemble with an integration step of 1 fs . During this stage protein backbone was constrained with $22 \mathrm{kcal} /(\mathrm{mol}$ $\AA^{2}$ ), zinc ions were constrained with $12 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$ and the inhibitory zinc ion (ZnI)
coordinating residues with $12 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$. This was followed by 70 ps of NPT ensemble simulations where constrains of $12 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right.$ ) were imposed only to the amino acid residues coordinating metal ions and metal ions itself. Followed 120 ps of MD simulations with constrains reduced to $6 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$. In the fourth stage ( 100 ps ) only zinc ions were constrained with $6 \mathrm{kcal} /\left(\mathrm{mol} \AA^{2}\right)$, while in the final 700 ps of equilibration all constrains were released. The SHAKE algorithm was used to constrain covalent bonds involving hydrogens. The pressure was maintained with Berendsen barostat ${ }^{1}$ at 1 atm with the pressure relaxation time of 1 ps , while the system temperature was held constant at 300 K using the Langevin thermostat ${ }^{2}$ with a collision frequency of 5 and $2 \mathrm{ps}^{-1}$ (for the first three and the last two equilibration steps, respectively). Simulations were performed using periodic boundary conditions (PBC) with a cutoff value of 11 Å while the particle mesh Ewald (PME) method was used for calculation of the long-range electrostatic interactions.

Productive MD simulations were performed with time step of 1 and 2 fs (in the case of utilizing dummy atoms model and the 12-6 model for the zinc ions, respectively). In MD simulations performed utilizing 6-12 model $\mathbf{2}$ and dummy atom model D2 charge on E451 was reduced to -0.75 e and -0.65 , respectively.

## ASMD simulations

We performed ASMD simulations in which we simulated a) entrance of zinc ion to the enzyme, b) exit of the metal ion ( Znl ) from the inhibitory metal binding site and its translocation to the protein surface. In both cases the active metal binding site (defined with H450, H 455 and E508) was occupied with zinc ion (ZnA). In simulations of the metal ion exit, the distance between the protein surface and the exiting entity was defined as the distance between Zn and the carboxyl groups of the residues D396 and D496 center of mass. The distance was gently decreased from 12.0-2.0 Å using a force constant of $7.2 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-2}$ and velocity of $1 \AA / \mathrm{ns}$. Simulations were carried out in five, 2 ns long stages, with 25 replicas performed for each stage. In simulations of zinc ion entering the enzyme, initial structure of ZnI was completely solvated (coordinated with 6 water molecules). ASMD simulations were carried out in twelve, 2 ns long stages, with 25 replicas performed for each one. After each step, the structure closest to the Jarzynski ${ }^{2}$ average was determined and used as the starting point for the next step. For ASMD simulations, the NVT ensemble was used. Time step in simulations was 1 fs .

Table S1 Metal ion models used within this work.

| Model | \# | charge/e |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{Z n}$ |  |  |  | E451 |
| Dummy <br> atom | $\begin{aligned} & \mathbf{D} 1^{1} \\ & \mathbf{D} 2^{2} \end{aligned}$ | Total | central point (carry vdw parameters) | $\delta$ points at zaxis of octahedron | points at x and y axes of octahedron |  |
|  |  | 2 | -1 | 0.5 | 0.5 |  |
|  |  | 1.325 | -0.475 | 0.1 | 0.4 | -0.65 |
| 6-12 | $1^{3}$ | 2.0 |  |  |  |  |
|  | 2 | 1.375 |  |  |  | -0.75 |
|  | 3 | ZnA 1.1, ZnI 0.9 |  |  |  |  |
|  | $\begin{aligned} & \mathbf{3}^{\prime} \\ & \mathbf{3 r} \end{aligned}$ | $\begin{gathered} 1.0 \\ \mathrm{ZnA} 0.9, \mathrm{ZnI} 1.1 \end{gathered}$ |  |  |  |  |

${ }^{1}$ F. Duarte, P. Bauer, A. Barrozo, B. A. Amrein, M. Purg, J. Åqvist and S. C. L. Kamerlin, J. Phys. Chem. B, 2014, 118, 4351-4362.
${ }^{2}$ The barrier for angles involving at least one of the dummy atoms was set to 0 in this model to allow plasticity of the coordination sphere.
${ }^{3}$ A. Tomić, M. Berynskyy, R. C. Wade and S. Tomić, Mol. Biosyst., 2015, 11, 3068-3080.

Table S2 MD simulations of several DPP III structures with 2 zinc ions bound into the substrate binding site and solvated in water $\mathrm{Na}^{+}$solution ( $\mathrm{Na}^{+}$ions are added for the purpose of system neutralization). Given are the data for the structures (metal ion coordination) that were the most populated during particular MD simulation. Time period (in $\mu \mathrm{s}$ ) the particular metal ion coordination was present ( $\mathrm{t}_{\mathrm{i}}$ ) and the total simulation time ( $\mathrm{t}_{\text {total }}$ ) are given in third column. The metal ligands present in the initial structures are given in bold. MMGBSA energies calculated at the trajectory sections where the metal ion coordination corresponds to the most populated coordination determined during particular simulation.
a) Simulations performed using 6-12 models (1-3) for the zinc ions. See Table S1 for models definition.

| Model \# | SIMULATED | $\begin{aligned} & \mathrm{t}_{\mathrm{i}} / \mathrm{t}_{\text {total }}{ }^{\mathrm{a}} \\ & (\mu \mathrm{~s} / \mu \mathrm{s}) \end{aligned}$ | < ZnA -Znl> <br> (Å) | ZnA ligands (coordinated with) | Znl ligands (coordinated with) | MMGBSA(kcal/mol) ${ }^{\text {b }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYSTEM <br> Force field |  |  |  |  | Receptor: DPP III Ligand: $\mathrm{Zn}_{\mathrm{A}}+\mathrm{Zn}$ I | Receptor: DPP III + ZnA Ligand: $\mathrm{Zn}_{1}$ | Receptor: DPP III Ligand: ZnA |
| 1 | $\begin{gathered} \text { S1 } \\ \text { ff03 } \end{gathered}$ | 0.2/0.2 | $4.7 \pm 0.2$ | $\begin{gathered} \mathrm{H} 450, \mathrm{H} 455, \\ \text { E508 } \mathrm{M}, \mathrm{E} 451^{\mathrm{M}} \\ \text { mostly } 4 \mathrm{~W} \end{gathered}$ | E508 ${ }^{\text {M }}$, H568, E316 ${ }^{\text {B }}$ mostly 3 W | $-20 \pm 5$ | $6 \pm 3$ | $-21 \pm 3$ |
|  | $\begin{gathered} \text { S1 } \\ \text { ff03 } \end{gathered}$ | 0.6/0.6 | $5.5 \pm 0.2$ | H450, H455, E508 ${ }^{\text {M }, ~ E 451 ~}{ }^{\text {M }}$ mostly 2 W | $\begin{aligned} & \mathrm{E} 508^{\mathrm{M}}, \mathrm{E} 316^{\mathrm{M}} \\ & \text { mostly } 4 \mathrm{~W} \end{aligned}$ | $2 \pm 5$ | $26 \pm 3$ | $-19 \pm 4$ |
|  | $\begin{gathered} \text { S1 } \\ \text { ff14SB } \end{gathered}$ | $\begin{aligned} & 0.3 / 0.3^{\mathrm{ZnA}} \\ & 0.15 / 0.3^{\mathrm{ZnI}} \end{aligned}$ | $4.9 \pm 0.1$ | $\begin{gathered} \text { H450, H455, } \\ \text { E508ㄹ, E4518, M } \\ \text { mostly } 2 \mathrm{~W} \end{gathered}$ | $\begin{aligned} & \mathrm{E} 508^{\mathrm{M}}, \mathrm{E} 316^{\mathrm{M}} \\ & \text { mostly } 4 \mathrm{~W} \end{aligned}$ | $24 \pm 4$ | $28 \pm 3$ | $2 \pm 2$ |
| 2 | $\begin{gathered} \text { S2 } \\ \text { ff03 } \end{gathered}$ | 0.85/1 | $4.0 \pm 0.4$ | $\begin{gathered} \text { H450, H455, } \\ \text { E508 }{ }^{\mathrm{M}} \text {, E451 } \\ \text { W 1-4 } \end{gathered}$ | $\begin{gathered} \text { E508B, E316 }{ }^{\text {B }} \\ \text { W 1-4 } \end{gathered}$ | $-31 \pm 4$ | $-2 \pm 2$ | $-27 \pm 3$ |
|  | $\begin{gathered} \text { S1 } \\ \text { ff03 } \end{gathered}$ | $\begin{gathered} 0.99 / 1^{\mathrm{ZnA}} \\ 0.81 / 1^{\mathrm{Znl}} \end{gathered}$ | $3.8 \pm 0.2$ | H450, H455, E508 ${ }^{\text {M }, ~ E 451 ~}{ }^{\text {M }}$ mostly 2 W | $\begin{gathered} \text { E508M, E316B } \\ \text { mostly } 3 \mathrm{~W} \end{gathered}$ | $-32 \pm 4$ | $1 \pm 3$ | $-26 \pm 3$ |
|  | $\begin{gathered} \mathbf{S 2} \\ \text { ff03 } \end{gathered}$ | $\begin{gathered} 0.42 / 0.45^{\mathrm{ZnA}} \\ 0.24 / 0.45^{\mathrm{ZnI}} \end{gathered}$ | $3.9 \pm 0.2$ | $\begin{gathered} \text { H450, H455, } \\ \text { E508 }{ }^{\mathrm{M}, \mathrm{E} 451^{\mathrm{M}^{* *}}} \\ \text { mostly } 1 \mathrm{~W} \end{gathered}$ | $\begin{gathered} \hline \text { E508 }{ }^{\mathrm{M}, ~ E 316 \mathrm{~B}}, \\ \text { mostly } 3 \mathrm{~W} \\ \hline \end{gathered}$ | $-25 \pm 5$ | $3 \pm 2$ | $-26 \pm 2$ |
|  |  | $0.12 / 0.45^{\mathrm{Znl}}$ |  |  | E316 ${ }^{\text {B }}$ <br> mostly 3 W | $-20 \pm 5$ | $10 \pm 3$ | $-26 \pm 1$ |


|  | $\begin{aligned} & \hline \mathrm{S1}-\mathrm{OH}^{-} \\ & \mathrm{ff03} \end{aligned}$ | $\begin{aligned} & \hline 0.25 / 0.35^{\mathrm{ZnA}} \\ & 0.21 / 0.35^{\mathrm{nn}} \end{aligned}$ | $3.5 \pm 0.3$ | $\begin{gathered} \text { H450, H455, } \\ \text { E508쏘, E451 }{ }^{\text {, }} \mathrm{OH}^{-} \end{gathered}$ | $\begin{gathered} {\mathrm{E} 316^{\mathrm{B}} \mathrm{E} 50 \mathbf{8}^{\mathrm{B}}, \mathbf{O H}^{-}}_{\text {mostly } 3 \mathrm{~W}} \end{gathered}$ | $-24 \pm 6$ | $13 \pm 5$ | $-27 \pm 4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { CPLX1 } \\ & \text { ff03 } \end{aligned}$ | $\begin{gathered} 0.24 / 0.25^{2 \mathrm{nA}} \\ 0.24 / 0.25^{\mathrm{Zn}} \end{gathered}$ | $5.2 \pm 0.3$ | H450, H455,E508 ${ }^{\text {M }}$, E451 ${ }^{\text {M }} 1-2$ W | H565, E508 ${ }^{\text {M }}$ mostly 2 W | $-26 \pm 2$ | $0 \pm 1$ | $-22 \pm 2$ |
| 3 | $\begin{gathered} \mathrm{S} 1-\mathrm{OH}^{*} \text { * } \\ \text { ff03 } \end{gathered}$ | $\begin{aligned} & 0.40 / 0.44^{\mathrm{ZnA}} \\ & 0.17 / 0.44^{\mathrm{nI}} \end{aligned}$ | $7.0 \pm 3.2$ | $\begin{gathered} \hline \text { H450, H455, } \\ \text { E508, }{ }^{\text {B,M, }} \mathbf{O H}^{-} \\ 0-1 \mathrm{~W} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{E} 316^{\mathrm{B}, \mathrm{M}}, \\ 2-3 \mathrm{~W} \end{gathered}$ | $-52 \pm 5$ | $-4 \pm 3$ | $-43 \pm 3$ |
|  | $\begin{gathered} \mathrm{S} 1-\mathrm{OH}^{-*} \\ \text { ff03 } \end{gathered}$ | $\begin{gathered} 0.18 / 0.2^{\mathrm{ZnA}} \\ 0.11 / 0.2^{\mathrm{ZnI}} \end{gathered}$ | $4.8 \pm 2.5$ | H450, H455, E508 ${ }^{\mathrm{M}}, \mathrm{OH}^{-}$ mostly 1 W | $\begin{gathered} \hline \text { E508 }^{\mathrm{M}}, \mathrm{H} 568, \\ \text { OH }^{-} \\ 1-3 \mathrm{~W} \end{gathered}$ | $-83 \pm 5$ | $-26 \pm 3$ | $-51 \pm 3$ |
|  | $\begin{gathered} \text { S1- } \mathrm{OH}^{-*} \\ \text { ff14SB } \end{gathered}$ | $\begin{gathered} 0.34 / 0.35^{\mathrm{ZnA}} \\ 0.16(0.11) / 0.35^{\mathrm{ZnI}} \end{gathered}$ | $\begin{gathered} 6.0 \pm 0.8 \\ 3.5 \pm 0.2 \text { (last } \\ 110 \mathrm{~ns}) \end{gathered}$ | H450, H455, E508 ${ }^{\text {B,M }}, \mathrm{OH}^{-}$ mostly 1 W | $\begin{gathered} \text { E316 }{ }^{\mathrm{M}}, \mathrm{H} 568, \\ \left(\mathrm{E} 316^{\mathrm{M}}, \mathrm{E} 451, \mathrm{OH}^{-}\right)^{\mathrm{d}} \\ 1-3 \mathrm{~W} \end{gathered}$ | $-46 \pm 6$ | $-6 \pm 4$ | $-36 \pm 4$ |
|  | $\begin{gathered} \text { S1- OH-* } \\ \text { ff14SB } \end{gathered}$ | $\begin{aligned} & 0.69 / 0.7^{\mathrm{ZnA}} \\ & 0.55 / 0.7^{\mathrm{ZnI}} \end{aligned}$ | $\begin{aligned} & 3.5 \pm 0.2 \text { (last } \\ & 590 \mathrm{~ns}) \end{aligned}$ | $\begin{gathered} \hline \text { H450, H455, } \\ \text { E508 }{ }^{\mathrm{M}}, \text { OH }^{-} \\ 1-2 \mathrm{~W} \\ \hline \end{gathered}$ | $\begin{gathered} \hline \mathrm{E} 451^{\mathrm{M}, \mathrm{~B}}, \\ \mathrm{OH}^{-} \\ 2-3 \mathrm{~W} \end{gathered}$ | $-49 \pm 4$ | $-11 \pm 4$ | $-35 \pm 3$ |
|  | $\begin{gathered} \hline \text { S1- OH }{ }^{-} \text {*exc } \\ \text { ff14SB } \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 0.5 / 1.0^{\mathrm{ZnA}} \\ & 0.87 / 1.0^{\mathrm{ZnI}} \\ & \hline \end{aligned}$ | $\begin{gathered} 10.0 \pm 0.7 \text { (last } \\ 740 \mathrm{~ns}) \\ \hline \end{gathered}$ | N294, E316 ${ }^{\text {M }}$ mostly 2-3 W | $\text { H450, H455, E508 }{ }^{\text {M }}$ mostly 1-2 W | $-27 \pm 4$ | $-14 \pm 4$ | $-12 \pm 2$ |
|  | $\begin{aligned} & \text { CPLX1 } \\ & \text { ff14SB } \end{aligned}$ | $\begin{aligned} & 1.1 / 1.1^{\mathrm{ZnA}} \\ & 1.1 / 1.1^{\mathrm{nn}} \end{aligned}$ | $4.0 \pm 0.2$ | $\begin{gathered} \text { H450, E451 }{ }^{\mathrm{M}, \mathrm{~B}} \\ \text { H455, E508 } \\ 1 \mathrm{~W} \end{gathered}$ | $\begin{gathered} \mathrm{H} 568, \mathrm{E} 508_{\mathrm{M}, \mathrm{~B}}^{\text {ch }} \mathrm{C}^{\mathrm{HM}-\mathrm{O2}^{\text {nd }}} \\ \text { mostly } 1 \mathrm{~W} \\ \hline \end{gathered}$ | $-34 \pm 4$ | $-1+3$ | $-23 \pm 3$ |
|  | CPLX1 <br> ff14SB | $\begin{aligned} & 1.1 / 1.2^{\mathrm{ZnA}} \\ & 0.5 / 1.2^{\mathrm{nn}} \end{aligned}$ | $4.0 \pm 0.2$ | $\begin{gathered} \text { H450, E451B,M } \\ \text { H455, E508 } \\ 1 \mathrm{~W} \end{gathered}$ | $\begin{gathered} \text { H568, E508 }{ }^{\text {M }} \\ \text { cHM-O2 }{ }^{\text {hd }} \\ 1 \mathrm{~W} \end{gathered}$ | $-31 \pm 3$ | $-2 \pm 2$ | $-22 \pm 3$ |
|  | $\begin{aligned} & \text { CPLX2 } \\ & \text { ff14SB } \end{aligned}$ | $\begin{aligned} & 0.32 / 0.34^{\mathrm{nA}} \\ & 0.32 / 0.34^{\mathrm{nI}} \end{aligned}$ | $11.6 \pm 0.9$ | $\begin{gathered} \hline \text { H450, H455, } \\ \text { E508 }{ }^{\mathrm{M},} \\ \text { mostly } 2 \mathrm{~W} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{D} 396^{M, B}, \mathrm{D} 496^{\mathrm{M}, \mathrm{~B}} \\ 1-2 \mathrm{~W} \end{gathered}$ | $-25 \pm 3$ | $-12 \pm 2$ | $-12 \pm 3$ |
|  | $\begin{gathered} \text { CPLX2 } \\ \text { ff14SB } \end{gathered}$ | $\begin{gathered} 0.28 / 0.28^{\mathrm{ZnA}} \\ 0.08 / 028^{\mathrm{ZnI}} \end{gathered}$ | $18.6 \pm 12.7$ | $\begin{aligned} & \text { H450, H455, } \\ & \text { E508 M, } 1 \text { W } \end{aligned}$ | $\begin{gathered} \mathrm{E} 508^{\mathrm{M}} \\ { }^{\text {HMM }}-\mathrm{O2}^{\text {nd }}, 1 \mathrm{~W} \end{gathered}$ | $-21 \pm 5$ | $-4 \pm 3$ | $-17 \pm 3$ |
| 3' | $\begin{aligned} & \text { CPLX2 } \\ & \text { ff14SB } \end{aligned}$ | $\begin{gathered} 0.94 / 1.0^{\mathrm{ZnA}} \\ 1.0 / 1.0^{\mathrm{ZnI}} \end{gathered}$ | $3.8 \pm 0.2$ | $\begin{gathered} \mathrm{H} 450, \text { H455, } \\ \text { E508 }{ }^{\mathrm{m}, \mathrm{~B}} \\ \text { mostly } 1 \mathrm{~W} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{H} 568, \mathrm{E} 508^{\mathrm{M}, \mathrm{~B}} \\ \text { 'HM-O2 }{ }^{\text {nd }} \\ \text { mostly } 2 \mathrm{~W} \\ \hline \end{gathered}$ | $-11 \pm 4$ | $4 \pm 3$ | $-8+3$ |
| 3 r | $\begin{aligned} & \text { CPLX2 exc } \\ & \text { ff14SB } \end{aligned}$ | $\begin{aligned} & 0.44 / 0.98^{\mathrm{nA}} \\ & 0.41 / 0.98^{\mathrm{Zn}} \end{aligned}$ | $4.5 \pm 0.4$ | $\begin{gathered} \text { H450, H455, } \\ \text { E451 }, \text {, } \\ \text { mostly } 1 \mathrm{~W} \end{gathered}$ | $\begin{gathered} \mathrm{H} 450, \mathrm{H} 455, \\ \text { E508 }^{\mathrm{m}, \mathrm{~B}} \mathrm{CHM}-\mathbf{O 2}^{\text {nd }} \\ \text { mostly } 1 \mathrm{~W} \\ \hline \end{gathered}$ | $-23 \pm 2$ | $-2 \pm 1$ | $-21 \pm 2$ |

${ }^{a}$ Time period the most populated system is present
${ }^{\mathrm{b}}$ MMGBSA energies calculated at the regions of trajectory with the most representative (populated) structure regarding the zinc ions coordination.
${ }^{\text {exc }}$ During this MD simulation exchange of zinc ions occurred, see Fig. S6.
${ }^{\text {d OH}}{ }^{-}$coordinate ZnI during the last 110 ns of MD simulation.
$\mathrm{OH}^{-}$bridges two zinc ions, ZnA and Znl

* $\mathrm{OH}^{-}$is H -bonded to the carboxyl ( COOH ) group of Glu451
b) Simulations performed using dummy atom models (D1-D2) for the zinc ions. See Table S1 for models definition.

| Model \# | SYSTEM <br> Force field | $\begin{gathered} \mathrm{t}_{\mathrm{i}} / \mathrm{t}_{\text {total }} \\ (\mu \mathrm{s}) \end{gathered}$ | <ZnA-Znl> <br> (Å) | ZnA ligands | Znl ligands | MMGBSA(kcal/mol) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Receptor: DPP III Ligand: ZnA + Znl | Receptor: DPP III Ligand: ZnA | Rec: DPP III+ ZnA Ligand: ZnI |
| D1 | $\begin{gathered} \text { S1 } \\ \text { ff14SB } \end{gathered}$ | $\begin{aligned} & 0.099 / 0.1^{\mathrm{ZnA}} \\ & 0.095 / 0.1^{\mathrm{ZnI}} \end{aligned}$ | $5.4 \pm 0.151 \%$ | $\begin{gathered} \text { H450, H455, } \\ \text { E508 }{ }^{\text {M, E451 }} \\ 2 \text { W } \end{gathered}$ | $\begin{gathered} \hline \text { H568, E316B, } \\ \text { E508ㅆ, Y315 } \\ \text { 2W } \\ \hline \end{gathered}$ | $-292 \pm 11$ | $-164 \pm 6$ | $-108 \pm 7$ |
|  | $\begin{gathered} \text { S1 } \\ \text { ff03 } \end{gathered}$ | 0.1/0.1 | $\begin{aligned} & 5.4 \pm 0.151 \% \\ & 5.1 \pm 0.149 \% \end{aligned}$ | $\begin{gathered} \text { H450, H455, } \\ \text { E508 }{ }^{\mathrm{M}}, \text { E451 } \\ 2 \mathrm{~W} \\ \hline \end{gathered}$ | $\begin{gathered} \text { E316 }^{\mathrm{M}}, \text { E508 } \\ \text { H568, } \\ 3 W \end{gathered}$ | $-320 \pm 8$ | $-187 \pm 6$ | $-121 \pm 6$ |
| D2 | $\begin{gathered} \hline \text { S1 } \\ \text { ff03 } \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0.085 / 0.1^{\mathrm{ZnA}} \\ / 0.1 / 0.1^{\mathrm{Znl}} \end{gathered}$ | $3.5 \pm 0.2$ | E508N, H450, H455 <br> mostly 3 W | $\begin{gathered} \text { E316 }{ }^{\mathrm{M}}, \text { E508 }{ }^{\mathrm{M}} \\ \text { mostly } 3 \mathrm{~W} \\ \hline \end{gathered}$ | $-144 \pm 6$ | $-80 \pm 5$ | $-47 \pm 7$ |
|  | $\begin{gathered} \text { S1 } \\ \text { ff03 } \\ \hline \end{gathered}$ | $\begin{aligned} & 0.066 / 0.1^{\mathrm{ZnA}} \\ & 0.056 / 0.1^{\mathrm{Zn}} \end{aligned}$ | $4.9 \pm 0.5$ | $\begin{gathered} \text { E508M, H450, H455 } \\ 3 W \end{gathered}$ | $\begin{aligned} & \text { E316M, E508M, } \\ & \text { H568 3W } \end{aligned}$ | $-166 \pm 8$ | $-81 \pm 5$ | $-50 \pm 10$ |
|  | $\begin{gathered} \text { S1 } \\ \text { ff14SB } \end{gathered}$ | $\begin{aligned} & 0.58 / 1^{\mathrm{ZnA}} \\ & 0.88 / 1^{\mathrm{ZnI}} \\ & \hline \end{aligned}$ | $5.4 \pm 0.3$ | $\begin{gathered} \text { H450, H455, E508 }{ }^{\text {M }} \\ 3-4 \mathrm{~W} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{E} 316^{\mathrm{M}}, \mathrm{E} 508^{\mathrm{M}} \\ \text { mostly } 4 \mathrm{~W} \\ \hline \end{gathered}$ | $-122 \pm 8$ | $-67 \pm 5$ | $-48 \pm 7$ |
|  | $\begin{gathered} \text { S2 } \\ \text { ff14SB } \end{gathered}$ | $\begin{aligned} & \hline 0.5 / 1^{\mathrm{ZnA}} \\ & 0.99 / 1^{\mathrm{ZnI}} \end{aligned}$ | $4.7 \pm 0.5$ | $\begin{gathered} \text { H450, H455, E508 }{ }^{\text {M }} \\ 3-4 W \end{gathered}$ | $\begin{gathered} \text { E316 }{ }^{\mathrm{M}}, \mathrm{E} 508^{\mathrm{M}} \\ 4-5 \mathrm{~W} \end{gathered}$ | $-116 \pm 7$ | $-68 \pm 5$ | $-43 \pm 5$ |
|  | $\begin{gathered} \text { S1 } \\ \text { ff14SB } \end{gathered}$ | $\begin{gathered} \hline 0.062 / 0.1^{\mathrm{ZnA}} \\ 0.1 / 0.1^{\mathrm{Zn} I} \end{gathered}$ | $4.1 \pm 0.3$ | $\begin{gathered} \text { H450, H455, E508 }{ }^{\text {M }} \\ 3 W \end{gathered}$ | $\begin{aligned} & \text { E508 }{ }^{\text {M }} \\ & 4-5 \mathrm{~W} \end{aligned}$ | $-102 \pm 9$ | $-69 \pm 4$ | $-23 \pm 6$ |
|  | $\begin{gathered} \text { S1 } \\ \text { ff14SB } \end{gathered}$ | $\begin{aligned} & \hline 0.22 / 0.25^{\mathrm{ZnA}} \\ & 0.16 / 0.25^{\mathrm{ZnI}} \\ & \hline \end{aligned}$ | $4.7 \pm 0.1$ | $\begin{gathered} \text { H450, H455, } \\ \text { E508 }{ }^{\mathrm{M}}, \text { E451 } \end{gathered}$ | $\begin{gathered} \text { H568, E508 }{ }^{\mathrm{M}}, \text { V730 } \\ 2-3 \mathrm{~W} \\ \hline \end{gathered}$ | $-160 \pm 7$ | $-96 \pm 5$ | -57 $\pm 5$ |


|  |  |  | 1W |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CPLX1 } \\ & \text { ff14SB } \end{aligned}$ | $\begin{aligned} & 0.5 / 0.5^{\mathrm{ZnA}} \\ & 0.5 / 0.5^{\mathrm{nn}} \end{aligned}$ | $5.2 \pm 0.3$ | H450, H455, E508 ${ }^{\text {M,B }, \mathrm{E}} 451$ mostly 1 W | $\begin{gathered} \text { E508 }{ }^{\mathrm{M}} \\ \text { mostly } 4 \mathrm{~W} \end{gathered}$ | $-114 \pm 7$ | $-93 \pm 5$ | $-18 \pm 4$ |
| $\begin{aligned} & \text { CPLX2 } \\ & \text { ff14SB } \end{aligned}$ | $\begin{aligned} & 0.5 / 0.5^{\mathrm{ZnA}} \\ & 0.44 / 0.5^{\mathrm{Zn}} \end{aligned}$ | $5.4 \pm 0.3$ | $\begin{gathered} \text { H450, H455, } \\ \text { E508, } \mathrm{B} \\ 1 \mathrm{~W} \end{gathered}$ | $\begin{gathered} \text { H568, E508 }{ }^{\text {M,B }} \mathrm{C} \text { 'HM-O2 }{ }^{\text {nd }} \\ \text { mostly } 2 \mathrm{~W} \\ \hline \end{gathered}$ | $-150 \pm 8$ | $-85 \pm 5$ | $-39 \pm 4$ |

Table S3. Selected distances in the two zinc ions hDPP III structures before (I) and after QM/MM optimization at B97D/[6-31(G)d + LanL2DZ-ECP] level of theory with charge embedding.

|  | d / Å |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{I}^{\text {a }}$ | S1 | S2 | 1 | S3 | $1{ }^{\text {b }}$ | CPLX1 | CPLX2 |
| ZnA-ZnI | 3.45 | 3.78 | 4.31 | 5.05 | 4.95 | 5.30 | 4.75 | 5.54 |
| ZnA-H450(ne2) | 2.34 | 2.11 | 2.14 | 2.29 | 2.19 | 2.19 | 2.11 | 2.15 |
| ZnA-E451(oe1) | 3.82 | 3.76 | 3.89 | 4.43 | 4.10 | 4.12 / 3.67 | 4.03 | 3.48 |
| ZnA-E451(oe2) | 3.98 | 4.66 | 4.47 | 4.84 | 4.72 | 2.93 / 2.19 | 3.67 | 2.18 |
| ZnA-H455(ne2) | 2.45 | 2.10 | 2.21 | 2.39 | 2.16 | 2.29 | 2.14 | 2.17 |
| ZnA-E508(oe2) | 2.18 | 2.03 | 2.06 | 2.05 | 2.14 | 2.17 | 2.02 | 2.10 |
| ZnA-W1(ow) | 2.20 | 2.00 | 2.03 | 2.14 | 2.14 | 2.19 | 1.95 | 2.13 |
| ZnA-W2(ow) | 2.31 | 3.01 | 3.45 | 2.51 | 2.26 | 6.08 | 5.50 | 5.50 |
| ZnA-W3(ow) | 2.49 | 2.98 | 2.82 | 2.16 | 2.32 | 5.75 | 5.00 | 5.65 |
| ZnA-W4(ow) | 4.58 | 4.73 | 5.99 | 6.06 | 4.62 | 7.07 | 6.26 | 5.78 |
| ZnA-W5(ow) | 4.08 | 4.45 | 2.39 | 7.02 | 6.87 | 9.71 | 8.72 | 8.31 |
| ZnA-W6(ow) | 4.44 | 3.94 | 5.65 | 6.29 | 6.19 |  |  |  |
| ZnA-W7(ow) |  |  |  | 6.13 | 6.18 |  |  |  |
| Znl-E508(oe1) | 2.17 | 2.16 | 3.98 | 2.06 | 2.09 | 2.20 | 2.29 | 4.26 |
| ZnI-H568(ne2) | 2.35 | 2.20 | 2.18 | 9.59 | 9.57 | 2.30 | 2.23 | 2.19 |
| ZnI-Y318(oh) | 2.53 / 4.19 | 2.22 | 4.79 | 9.28 | 9.98 | 2.60 | 2.28 | 2.17 |
| Znl-E316(oe1) | 4.16 / 3.88 | 3.81 | 3.21 | 3.72 | 3.87 | 3.88 | 3.84 | 4.06 |
| Znl-E316(oe2) | 3.89 / 2.75 | 4.03 | 2.10 | 2.07 | 2.11 | 5.66 | 5.97 | 6.18 |
| ZnI-W1(ow) | 4.42 | 3.84 | 4.28 | 6.49 | 6.08 | 4.90 | 4.88 | 4.71 |
| ZnI-W2(ow) | 2.49 | 2.13 | 2.16 | 5.44 | 5.80 | 3.77 | 3.67 | 4.00 |
| ZnI-W3(ow) | 2.46 | 2.21 | 2.17 | 3.76 | 3.44 | 2.30 | 2.15 | 2.21 |
| ZnI-W4(ow) | 2.21 | 2.14 | 2.16 | 2.93 | 2.22 | 2.30 | 2.20 | 2.17 |
| ZnI-W5(ow) | 5.63 | 5.22 | 4.22 | 2.14 | 2.15 | 4.60 | 4.40 | 3.66 |
| ZnI-W6(ow) | 5.25 | 4.77 | 3.35 | 2.11 | 2.21 |  |  |  |
| ZnI-W7(ow) |  |  |  | 2.45 | 2.15 |  |  |  |
| W1(ow)-W1(hw1) | 0.96 | 0.99 | 0.98 | 0.98 | 0.99 | 0.96 | 0.97 | 0.97 |
| W1(ow)-W1(hw2) | 0.96 | 1.53 | 1.51 | 0.99 | 1.05 | 0.96 | 1.38 | 1.03 |
| W2(ow)-W2(hw1) | 0.96 | 0.99 | 0.99 | 0.98 | 1.00 | 0.96 | 0.98 | 1.00 |
| W2(ow)-W2(hw2) | 0.96 | 1.03 | 1.00 | 0.99 | 1.00 | 0.96 | 0.99 | 0.99 |
| W3(ow)-W3(hw1) | 0.96 | 0.97 | 1.01 | 0.99 | 1.00 | 0.96 | 0.99 | 1.00 |
| W3(ow)-W3(hw2) | 0.96 | 1.02 | 1.00 | 0.99 | 1.00 | 0.96 | 1.00 | 0.98 |
| W4(ow)-W4(hw1) | 0.96 | 0.97 | 0.98 | 0.98 | 0.97 | 0.96 | 1.00 | 1.00 |
| W4(ow)-W4(hw2) | 0.96 | 1.02 | 1.02 | 0.99 | 1.00 | 0.96 | 1.00 | 1.00 |
| W5(ow)-W5(hw1) | 0.96 | 0.98 | 1.01 | 0.98 | 0.99 | 0.96 | 0.98 | 1.01 |
| W5(ow)-W5(hw2) | 0.96 | 0.99 | 0.98 | 0.99 | 1.00 | 0.96 | 0.99 | 0.98 |
| W6(ow)-W6(hw1) | 0.96 | 0.97 | 1.01 | 0.99 | 0.99 |  |  |  |
| W6(ow)-W6(hw2) | 0.96 | 0.98 | 0.98 | 0.99 | 0.99 |  |  |  |
| W7(ow)-W7(hw1) |  |  |  | 0.98 | 0.99 |  |  |  |
| W7(ow)-W7(hw2) |  |  |  | 0.98 | 1.02 |  |  |  |


| E451(oe1)-W1(hw2) | 1.51 | 1.06 | 1.08 | 1.67 | 1.52 | $1.74 / 2.15$ | 1.11 | 1.61 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E316(oe2)-W3(hw1) | $3.14 / 3.62$ | 3.01 | 3.49 | 1.64 | 1.82 | 4.63 | 4.93 | 5.64 |
| E316(oe2)-W3(hw2) | $1.73 / 2.78$ | 1.65 | 2.69 | 2.88 | 3.31 | 3.57 | 3.64 | 4.77 |
| E316(oe1)-W3(hw2) | $3.43 / 2.61$ | 2.95 | 1.75 | 4.41 | 4.86 | 1.84 | 1.72 | 2.90 |
| E316(oe1)-W4(hw2) | $1.69 / 1.95$ | 1.61 | 3.57 | 4.65 | 4.83 | 4.17 | 5.01 | 5.60 |
| E316(oe2)-W4(hw2) | $2.53 / 2.58$ | 2.67 | 2.94 | 3.50 | 2.95 | 6.83 | 7.11 | 7.42 |
| E316(oe2)-W6(hw2) | $1.83 / 4.28$ | 2.00 | 2.85 | 4.89 | 4.80 |  |  |  |
| E316(oe1)-W6(hw2) | $3.48 / 2.85$ | 3.75 | 1.94 | 6.24 | 6.10 |  |  |  |
| Y318(hh)-E508(oe1) | $3.97 / 1.66$ | 4.15 | 1.79 | 10.08 | 10.70 | 5.17 | 4.94 | 6.25 |
| Y318(hh)-E316(oe1) | $2.28 / 5.69$ | 1.62 | 5.41 | 11.80 | 12.37 | 1.85 | 1.72 | 1.74 |
| Y318(hh)-E316(oe2) | $2.16 / 3.64$ | 2.83 | 4.65 | 10.27 | 11.21 | 3.59 | 3.84 | 4.00 |
| E508(oe1)-W3(hw1) | 3.54 | 2.55 | 1.67 | 2.63 | 2.69 | 3.56 | 3.44 | 3.14 |
| E508(oe1)-W2(hw1) | 4.56 | 3.84 | 4.80 | 3.90 | 4.42 | 2.12 | 1.83 | 1.16 |
| Znl-O supst |  |  |  |  |  | 2.35 | 2.14 | 2.06 |

${ }^{a}$ Values in S2 that differ from those in S1 and (right and left, respectively).
${ }^{\text {b }}$ Values in CPLX2 that differ from those in CPLX1 (right and left, respectively).

Table S4. Energies (and their differences) computed with the ONIOM methodology utilizing the B97D/[6-31(G)d + LanL2DZ-ECP] level of theory for the QM layer, and Amber parm96 force field for the $M M$ layer. $E^{M M}(M)$ and $E^{M M}(R)$ give the energies of the model $(M)$ and real ( $R$ ) system, respectively, at the low accuracy method, wherein $E^{Q M}(M)$ energy of the model system at the high accuracy method. E ${ }^{O N I O M}$ is the ONIOM total energy.

|  | S1 | S2 |  | $\Delta$ = S1-S2 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{E}^{\mathrm{MM}}(\mathrm{M}) / \mathrm{kcal} \mathrm{mol}^{-1}$ | -1469.96 | -1501.38 | $\Delta \mathrm{E}^{\mathrm{MM}}(\mathrm{M}) / \mathrm{kcal} \mathrm{mol}^{-1}$ | 31.42 |
| $\mathrm{E}^{\mathrm{QM}}(\mathrm{M}) / \mathrm{kcal} \mathrm{mol}^{-1}$ | -1590755.14 | -1590770.24 | $\Delta \mathrm{E}^{\mathrm{QM}}(\mathrm{M}) / \mathrm{kcal}^{\text {mol }}$ | 15.10 |
| $\mathrm{E}^{\mathrm{Mm}}(\mathrm{R}) / \mathrm{kcal} \mathrm{mol}^{-1}$ | -39106.50 | -39117.72 | $\Delta \mathrm{E}^{\mathrm{MM}}(\mathrm{R}) / \mathrm{kcal}^{\text {mol }}$ | 11.21 |
| $\mathrm{E}^{\text {ONIOM/ }}$ /kcal mol ${ }^{-1}$ | -1628391.68 | -1628386.57 | $\Delta \mathrm{E}^{\text {ONIOM } / \mathrm{kcal} \mathrm{mol}}{ }^{-1}$ | -5.10 |


|  | CPLX2 | CPLX1 | $\Delta=$ CPLX2 - CPLX1 |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{E}^{\mathrm{MM}}(\mathrm{M}) / \mathrm{kcal} \mathrm{mol}{ }^{-1}$ | -940.47 | -1751.72 | $\Delta \mathrm{E}^{\mathrm{MM}}(\mathrm{M}) / \mathrm{kcal} \mathrm{mol}^{-1}$ | 811.25 |
| $\mathrm{E}^{\mathrm{QM}}(\mathrm{M}) / \mathrm{kcal} \mathrm{mol}^{-1}$ | -2315821.57 | -2315809.38 | $\Delta \mathrm{E}^{\mathrm{QM}}(\mathrm{M}) / \mathrm{kcal} \mathrm{mol}^{-1}$ | -12.19 |
| $\mathrm{E}^{\mathrm{MM}}(\mathrm{R}) / \mathrm{kcal} \mathrm{mol}^{-1}$ | -45642.95 | -46461.53 | $\Delta \mathrm{E}^{\mathrm{MM}}(\mathrm{R}) / \mathrm{kcal}^{\text {mol }}$ | 818.58 |
| $\mathrm{E}^{\text {ONIOM/ }}$ / $\mathrm{calal} \mathrm{mol}^{-1}$ | -2360524.06 | -2360519.19 | $\Delta \mathrm{E}^{\text {ONIOM } / \mathrm{kcal} \mathrm{mol}}{ }^{-1}$ | -4.87 |

Table S5. The ONIOM calculated ESP charges for the whole system. Values for atoms described quantum mechanically (utilizing B97D/[6-31(G)d + LanL2DZ-ECP] level of theory) are shown.

| Residue | Atom name | S1 | S2 | S3 | CPLX1 | CPLX2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GLU316 | CB | -0.089324 | -0.319739 | -0.356837 | -0.084928 | -0.276494 |
|  | HB2 | 0.051013 | 0.141189 | 0.170904 | 0.06153 | 0.092067 |
|  | HB3 | -0.052636 | 0.056291 | 0.0942 | -0.048237 | 0.017205 |
|  | CG | -0.088354 | 0.033603 | -0.243881 | 0.151137 | 0.04336 |
|  | HG2 | 0.058097 | -0.029791 | 0.127118 | -0.05155 | 0.028105 |
|  | HG3 | 0.096648 | 0.048043 | 0.053713 | 0.021612 | 0.107271 |
|  | CD | 0.796657 | 0.575377 | 0.909565 | 0.407101 | 0.72433 |
|  | OE1 | -0.746874 | -0.610213 | -0.715857 | -0.350946 | -0.666406 |
|  | OE2 | -0.816321 | -0.736914 | -0.828443 | -0.507134 | -0.626042 |
| TYR318 | CB | -0.457941 | -0.495233 |  | -0.542032 | -0.498795 |
|  | HB2 | 0.123531 | 0.078519 |  | 0.13695 | 0.124501 |
|  | HB3 | 0.150727 | 0.120255 |  | 0.179444 | 0.159853 |
|  | CG | 0.314097 | 0.316231 |  | 0.389872 | 0.311393 |
|  | CD1 | -0.315952 | -0.260862 |  | -0.34904 | -0.279417 |
|  | HD1 | 0.131175 | 0.195937 |  | 0.199507 | 0.193563 |
|  | CE1 | -0.162579 | -0.297344 |  | -0.14937 | -0.290376 |
|  | HE1 | 0.141133 | 0.146225 |  | 0.148572 | 0.17038 |
|  | CZ | 0.343333 | 0.34808 |  | 0.163718 | 0.42025 |
|  | OH | -0.563301 | -0.531835 |  | -0.50512 | -0.918107 |
|  | HH | 0.392761 | 0.400101 |  | 0.339318 | 0.635347 |
|  | CE2 | -0.219203 | -0.194326 |  | 0.002572 | -0.268818 |
|  | HE2 | 0.160443 | 0.162684 |  | 0.112968 | 0.223598 |
|  | CD2 | -0.27044 | -0.25763 |  | -0.360004 | -0.230213 |
|  | HD2 | 0.174209 | 0.170547 |  | 0.191287 | 0.190114 |
| HIS450 | CB | -0.514015 | -0.468016 | -0.41179 | -0.481699 | -0.543635 |
|  | HB2 | 0.163518 | 0.147899 | 0.147828 | 0.162868 | 0.17022 |
|  | HB3 | 0.210919 | 0.188994 | 0.168328 | 0.207368 | 0.219173 |
|  | CG | 0.288391 | 0.235654 | 0.158424 | 0.215837 | 0.263386 |
|  | ND1 | -0.396507 | -0.351896 | -0.310322 | -0.30108 | -0.337893 |
|  | HD1 | 0.412158 | 0.401566 | 0.407667 | 0.401841 | 0.399141 |
|  | CE1 | 0.106853 | -0.029472 | -0.104209 | -0.006389 | 0.055121 |
|  | HE1 | 0.120806 | 0.152191 | 0.179697 | 0.158863 | 0.135279 |
|  | NE2 | -0.432842 | -0.229321 | -0.048421 | -0.366471 | -0.421624 |
|  | CD2 | -0.0976 | -0.156587 | -0.253141 | -0.084849 | -0.145832 |
|  | HD2 | 0.121801 | 0.143784 | 0.192987 | 0.10541 | 0.149145 |
| GLU451 | CB | -0.233611 | -0.226654 | -0.263703 | -0.404965 | -0.237702 |
|  | HB2 | 0.037555 | 0.036317 | 0.029385 | 0.097112 | 0.066546 |
|  | HB3 | 0.071905 | 0.0682 | 0.068078 | 0.037843 | 0.018227 |
|  | CG | 0.108275 | 0.10914 | 0.095378 | 0.254405 | 0.215569 |
|  | HG2 | 0.039213 | 0.032525 | 0.026147 | -0.000618 | -0.009051 |
|  | HG3 | 0.017815 | 0.011702 | -0.005341 | -0.006858 | -0.029691 |
|  | CD | 0.564646 | 0.579946 | 0.656158 | 0.552762 | 0.475114 |
|  | OE1 | -0.627232 | -0.633064 | -0.725427 | -0.550747 | -0.607 |
|  | OE2 | -0.613414 | -0.617329 | -0.759265 | -0.727709 | -0.626977 |
| HIS5455 | CB | -0.503017 | -0.517297 | -0.567741 | -0.572192 | -0.536937 |
|  | HB2 | 0.09809 | 0.094023 | 0.120559 | 0.134701 | 0.116384 |
|  | HB3 | 0.142055 | 0.141898 | 0.142799 | 0.1187 | 0.111929 |
|  | CG | 0.363079 | 0.367163 | 0.470112 | 0.386731 | 0.394455 |
|  | ND1 | -0.311485 | -0.343172 | -0.404463 | -0.363562 | -0.349656 |
|  | HD1 | 0.464782 | 0.459786 | 0.451713 | 0.443659 | 0.444177 |


|  | CE1 | -0.061085 | 0.034855 | 0.046135 | 0.095019 | -0.005863 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HE1 | 0.226545 | 0.201946 | 0.197504 | 0.184143 | 0.206272 |
|  | NE2 | -0.165 | -0.329322 | -0.187463 | -0.441991 | -0.236659 |
|  | CD2 | -0.336429 | -0.2656 | -0.407627 | -0.159707 | -0.325632 |
|  | HD2 | 0.192963 | 0.156156 | 0.211211 | 0.132222 | 0.181353 |
| GLU508 | CB | -0.278155 | -0.382354 | -0.448574 | -0.349516 | -0.437205 |
|  | HB2 | 0.137386 | 0.18971 | 0.076381 | 0.110108 | 0.133188 |
|  | HB3 | 0.090833 | 0.077348 | 0.107207 | 0.105514 | 0.101645 |
|  | CG | -0.138522 | -0.020983 | 0.178795 | -0.095265 | 0.037058 |
|  | HG2 | 0.06281 | 0.057863 | 0.038547 | 0.075334 | 0.043597 |
|  | HG3 | 0.019426 | -0.016786 | -0.049621 | 0.037633 | 0.037763 |
|  | CD | 0.709406 | 0.609435 | 0.706189 | 0.760854 | 0.512655 |
|  | OE1 | -0.48752 | -0.559177 | -0.731322 | -0.573563 | -0.59368 |
|  | OE2 | -0.711116 | -0.677669 | -0.637002 | -0.775555 | -0.75329 |
| HIS568 | CB | -0.487879 | -0.517485 |  | -0.567689 | -0.538319 |
|  | HB2 | 0.15802 | 0.162711 |  | 0.146639 | 0.128699 |
|  | HB3 | 0.066565 | 0.053784 |  | 0.130885 | 0.123085 |
|  | CG | 0.373622 | 0.450527 |  | 0.432752 | 0.565261 |
|  | ND1 | -0.354259 | -0.376904 |  | -0.35777 | -0.460842 |
|  | CE1 | 0.437554 | 0.425024 |  | 0.424967 | 0.442643 |
|  | HE1 | 0.072078 | 0.061734 |  | 0.0938 | 0.285675 |
|  | NE2 | 0.137978 | 0.157687 |  | 0.152933 | 0.133761 |
|  | HE2 | -0.329362 | -0.346467 |  | -0.381635 | -0.684271 |
|  | CD2 | -0.251776 | -0.317327 |  | -0.171432 | -0.365601 |
|  | HD2 | 0.156655 | 0.182142 |  | 0.14578 | 0.251342 |
| ZnA | ZN | 1.095133 | 1.02401 | 0.749966 | 1.182116 | 1.248365 |
| Znl | ZN | 0.924497 | 1.261918 | 1.438083 | 0.972494 | 1.385655 |
| W1 | OW | -1.17679 | -0.958692 | -0.931077 | -0.966258 | -0.639536 |
|  | HW1 | 0.555335 | 0.387306 | 0.453937 | 0.345861 | 0.272928 |
|  | HW2 | 0.529035 | 0.486839 | 0.527032 | 0.585996 | 0.377933 |
| W2 | OW | -0.768324 | -0.834378 | -0.928566 | -0.817555 | -0.892788 |
|  | HW1 | 0.429888 | 0.407698 | 0.504281 | 0.350837 | 0.423411 |
|  | HW2 | 0.500071 | 0.455589 | 0.504825 | 0.499375 | 0.520663 |
| W3 | OW | -1.169939 | -0.768216 | -0.288718 | -0.90326 | -1.067916 |
|  | HW1 | 0.465216 | 0.352653 | 0.222901 | 0.294679 | 0.568029 |
|  | HW2 | 0.718983 | 0.392775 | 0.375829 | 0.594468 | 0.534906 |
| W4 | OW | -0.92793 | -0.909529 | -0.73809 | -0.844866 | -0.719297 |
|  | HW1 | 0.462212 | 0.454907 | 0.44151 | 0.410705 | 0.307598 |
|  | HW2 | 0.498468 | 0.485635 | 0.2157 | 0.452135 | 0.475159 |
| W5 | OW | -0.94199 | -0.842886 | -1.222386 | -0.763622 | -0.896901 |
|  | HW1 | 0.428234 | 0.488081 | 0.592998 | 0.330427 | 0.542104 |
|  | HW2 | 0.520065 | 0.463905 | 0.591531 | 0.477387 | 0.430207 |
| W6 | OW | -0.87123 | -0.850895 | -1.005956 |  |  |
|  | HW1 | 0.38866 | 0.508176 | 0.5071 |  |  |
|  | HW2 | 0.492829 | 0.39914 | 0.521825 |  |  |
| W7 | OW |  |  | -0.913768 |  |  |
|  | HW1 |  |  | 0.516631 |  |  |
|  | HW2 |  |  | 0.504666 |  |  |
| Os |  |  |  |  | -0.412342 | -0.407959 |



c)

d)

e)

Figure S1. Active site geometries in: a) S1 (green) and S2 structures wherein the amino acid residues in $\mathbf{S 2}$ with orientation different from those in $\mathbf{S 1}$ are coloured pink, and b) in structure of the complexes CPLX2 (green) and CPLX1 wherein the amino acid residues in CPLX1 with orientation different from those in CPLX2 are shown in pink. Peptide IVYPW carbon atoms are coloured yellow (only polar hydrogens are shown) and solvent is not shown. In figures c), d) and e) the QM layers, as defined in the present QM/MM calculations, of S1 (equally valid for S2), S3, and CPLX1 (equally valid for CPLX2) are shown, respectively. Amino acid residues and water molecules are shown as sticks, and zinc ions as spheres. Link atoms are not shown.


Figure S2. QM/MM optimized structures: a) S1, b) S2, c) S3, d) CPLX1 and e) CPLX2. Calculations were performed at the B97D/[6-31(G)d + LanL2DZ-ECP] level of theory for QM layer, and using Amber parm96 force field for MM layer. Residues represented as stick (amino acids), ball and stick (waters) and sphere (zinc ions) are treated at QM level of theory. Peptide IVYPW (stick representation) carbon atoms are colored green. Only polar hydrogens are shown. Coordinating bonds and some important hydrogen bonds are shown as black and yellow dashed lines, respectively. For distances see Tables 1 and S3.


Figure S3. Coordination of zinc ions during $1 \mu$ s of MD simulations of structures $\mathbf{S 1}$ ( $a$ and $b$ ) and $\mathbf{S 2}$ (c and d) with model D2 and ff14SB force field: a) and c) distances from ZnA to Ne atoms of H 450 and H455 (black and red, respectively), to carboxyl oxygens of E451 (blue and green), and to carboxyl oxygens of E508 (yellow and brown); b) and d) distances from Znl to Y 318 hydroxyl (black), to carboxyl oxygens of E316 (red and green), to N $\varepsilon$ atom H568 (blue) and to carboxyl oxygens of E508 (yellow and brown).


Figure S4. Distance between zinc ions during MD simulations longer of 350 ns : a) and b) distances the during simulations of the ligand free hDPP III with dummy atom model D2 and 6-12 models, respectively; c) and d) distances during simulations of the hDPP III - IVYPW complex and with dummy atom model D2 and 6-12 models. More parameters about each simulation is given in Table S2.


Figure S5. S1-OH ${ }^{-}$structure obtained after 700 ns of MD simulation. ZnA is coordinated with H 450 , $\mathrm{H} 455, \mathrm{E} 508$ and $\mathrm{OH}^{-}$, and Znl is coordinated with E451 and $\mathrm{OH}^{-}$.



Figure S6. Coordination of zinc ions during 440 ns ( $a$ and $b$ ) and 700 ns ( $c$ and d) of MD simulations of S1- $\mathrm{OH}^{-*}$ (see Table S2) with 6-12 model 3 and ff03 and ff14SB force fields, respectively: a) and c) distances from ZnA ; b) and d) distances from ZnI .


Figure S7. Coordination of zinc ions during 500 ns of MD simulations of CPLX1 ( a and b ) and CPLX2 (c and d) with model D2, see Table S2.
a)

ZnA coordination


c)
d)

Figure S8. Coordination of zinc ions during $1.2 \mu \mathrm{~s}$ of MD simulations of CPLX1 with model 3 ( $a$ and $b$ ) and $1.0 \mu \mathrm{~s}$ of MD
simulations of CPLX2 with model 3' (c and d), see Table S2.


c)

Figure S9. Coordination of zinc ions during 340 ns of MD simulations of CPLX2 with model 3 (a and b), c) structure at the end of 340 ns of MD simulation. Protein is shown as ribbon, zinc ions as spheres (ZnA gray, and Znl magenta) and amino acids E396 and E496 coordinating Znl are shown as sticks.


Figure S10. Exchange of the ZnA and ZnI positions during $1.0 \mu \mathrm{~s}$ of MD simulations of $\mathbf{S 1 - O H}$ with model 3.


Figure S11. MMGBSA energies for ZnA and Znl binding calculated at 10 ns intervals separated by 40 ns intervals throughout of $1.0 \mu$ s long of MD simulations of $\mathbf{S 1}-\mathrm{OH}$ with model 3.


Figure S12. Exchange of the ZnA and ZnI positions and exit of ZnA from the protein traced during 980 ns of MD simulations of CPLX2 with model $3 r$.


Figure S13. Exchange of the ZnA (green sphere) and ZnI (magenta sphere) positions and exit (indicated by dashed arrow) of ZnA from the protein traced during 720 ns of MD simulations of CPLX2 with model $3 r$. Amino acid residues (carbon atoms coloured grey, only side chains are shown) participating in metal ions coordination and peptide (carbon atoms coloured cyan, only main chain atoms are shown) are show as sticks (initial positions are indicated with thicker sticks). Hydrogens are not shown.

Exchange of two zinc ions positions


Figure S14. Distance between zinc ions during MD simulations of ligand-free hDPP III and its complex with peptide (IVYPW), in which the zinc ion moves from the inhibitory binding site to the active binding site and the zinc ion originally present in the active site moves away. Simulations were performed using 6-12 models 3 and 3 r, respectively. These simulations are indicated in Table S2 with superscript 'exe'.
 sqare deviation (RMSD) obtained during the most representative (and the longest) MD simulations using dummy atom and 6-12 models for metal ions.

(A)


4
(B)

Figure S16. Free energy barriers for translocation of zinc ions (ZnI) from bulky water to the interior of hDPP III, near the position of the catalytically active zinc ion (ZnA). (A) Potential of the mean force profile. Numbers (1-3) in the plot indicate the initial position and the positions of the minima shown in the figure below. Number 4 indicates the structures representing the zinc ion trapped by D396 as it enters the interior of the protein. B) Shown are the structures indicated in the plot and the two structures representing the entry of the zinc ion into the cleft (from the region indicated by the red line above), with D496 serving as the metal ion transporter. Znl is shown as a magenta sphere, ZnA as a green sphere.

(A)

(B)

Figure S17. Free energy barriers to translocation of the zinc ion from the inhibitory binding site to the protein surface. (A) Potential of the mean force profile. The arrow indicates the direction of the force. (B) Left - structure from the region indicated by the red line above, and right - final structure. Znl is shown as a magenta sphere, and ZnA as a green sphere. The position of Znl in the final structure is very similar to its position in the structure shown in Fig. S9. c, which was obtained during 340 ns of the MD simulations of CPLX2, when Znl spontaneously moved towards the entrance of the interdomain gap.

## REFERENCES:

1 W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc., 1995, 117, 5179-5197.

2
C. Jarzynski, Nonequilibrium Equality for Free Energy Differences, Phys. Rev. Lett., 1997, 78, 2690-2693.

