Infrequent Metadynamics Study of Rareevent Electrostatic Channeling

Yan Xie, Scott Calabrese Barton
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA. E-mail: scb@msu.edu

Contents

1. Section S1. Definition of Infrequent Metadynamics Basins
2. Figure S1. Schematic of the KMC model
3. Figure S2. Association Distribution of G6P on the Poly-lysine Bridge
4. Figure S3. Electrostatic Energy between G6P and the Poly-arginine Bridge
5. Figure S4. Umbrella Sampling Energy Profiles
6. Figure S5. Production Concentration Versus Time in the KMC Model
7. Figure S6. Probabilty of the Adsorbed Intermediates on the Bridges
8. Table S1. Energy Barriers and Rate Constants
9. Table S2. KMC Parameters

S1 Definition of Infrequent Metadynamics Basins

In the committor analysis of infrequent metadynamics, we defined 19 possible triple association basins, besides d_{246}, based on the assumption that the nearby index difference of the three indexes of $d_{i j k}$ should not be greater than 2 . For instance, $d_{123}, d_{124}, d_{135}$ and d_{134} are possible, but not d_{125} or d_{145}. Therefore, these basins below are all assumed to be possible triple association basins: $d_{123}, d_{124}, d_{134}, d_{135}, d_{234}, d_{235}, d_{245}, d_{246}, d_{345}, d_{346}, d_{356}, d_{357}, d_{456}$, $d_{457}, d_{467}, d_{468}, d_{567}, d_{568}, d_{578}$, and d_{678}.

Fig. S1 Schematic of the KMC model.

Fig. S2 Association state probability of G6P on the poly-lysine bridge.

Fig. S3 Electrostatic energy between G6P and the poly-arginine bridge.

Fig. S4 (a) Example biased distribution of x_{1} of all the US windows at $I S=0 \mathrm{mM}$, temperature 300 K . (b) Example 2D energy plot of G6P desorption energy from the triple association on the poly-arginine peptide. Data above the yellow cutoff line was used for calculation of the PMF. (c) The projection of desorption energy on x_{1} at $I S=0 \mathrm{mM}$, temperature 300 K .

Fig. S5 Product concentration versus time at IS $=120 \mathrm{mM}$ in the KMC model.

Fig. S6 Probability distribution of the number of adsorbed intermediates on the poly-lysine bridge and polyarginine bridge.

Table S1. Energy barriers and rate constants

IS	$G_{\text {hop }}$	$\Delta G_{\text {des }}$	ΔG	$\frac{k_{\text {hop }}}{k_{\text {des }}}$	$\frac{k_{\text {ads }}}{k_{\text {des }}} \times 10^{6}$
mM	$\mathrm{kJ} / \mathrm{mol}$	$\mathrm{kJ} / \mathrm{mol}$	$\mathrm{kJ} / \mathrm{mol}$		
0	25.1	47.4	22.3	7515	179
20	25.1	45.6	20.5	3652	87
40	25.1	42.6	17.5	1096	26
70	25.1	41.2	16.1	625	15
120	25.1	36.7	11.6	103	2.5

IS: ionic strength
$G_{\text {hop }}, k_{\text {hop }}$: energy barrier and rate constant of hopping on the bridge from one triple association to an adjacent triple association
$\Delta G_{d e s}, k_{d e s}$: energy barrier and rate constant of desorption from triple association ΔG : the energy difference between hopping and desorption $\Delta G=G_{d e s}-G_{h o p}$

Table S2. KMC parameters

Region	Parameter	Value
System	$c_{H K-G 6 P D H}$, cascade concentration, $\mathrm{mol} \mathrm{L}^{-1}$	8×10^{-9}
	Vol, reaction volume, L	2.1×10^{-14}
	$c_{\text {sub }}$, substrate concentration for $\mathrm{HK}, \mathrm{mol} \mathrm{L}^{-1}$	2
HK	$k_{c a t}^{H K}$, TOF of HK, molec s ${ }^{-1}$	0.7
	$k_{\text {des }}^{H K}$, desorption rate on $\mathrm{HK}, \mathrm{s}^{-1}$	0.07
	$k_{\text {ads }}^{H K}$, absorption rate on $\mathrm{HK}, \mathrm{s}^{-1}$	7.7×10^{4}
	$k_{\text {hop }}^{1 b}$, hopping rate from HK to bridge, s^{-1}	$k_{\text {hop }}$
	$K_{M, 1}^{H K}$, Michaelis constant of HK, mM	10^{-5}
Bridge	$k_{\text {hop }}$, hopping rate on bridge, s^{-1}	$k_{c a t}^{H K} \times 100=70$
	$k_{\text {des }}$, desorption rate on bridge, s^{-1}	$\frac{k_{\text {hop }}}{k_{\text {hop }} / k_{\text {des }}}$
	$k_{\text {ads }}$, adsorption rate on bridge, $\mathrm{s}^{-1} \mathrm{~mol}^{-1} \mathrm{~L}$	$k_{\text {des }} \times\left(k_{\text {hop }} / k_{\text {des }}\right)$
G6PDH	$k_{\text {hop }}^{b 2}$, hopping rate from bridge to G6PDH, s^{-1}	$k_{\text {hop }}$
	$k_{\text {cat }}^{\mathrm{G} 6 \mathrm{PDH}}$, TOF of G6PDH, molec s ${ }^{-1}$	6.2
	$k_{\text {des }}^{\mathrm{G6PDH}}$, desorption rate on G6PDH, s^{-1}	0.62
	$k_{\text {ads }}^{\mathrm{G} 6 \mathrm{PDH}}$, absorption rate on G6PDH, s^{-1}	1.3×10^{6}
	$K_{M, 2}$, Michaelis constant of G6PDH, mM	5.4×10^{-6}

* The value of $k_{\text {hop }} / k_{\text {des }}$ is from Table S1.

