Electronic Supplementary Information (ESI)

Theoretically Modelling Graphene-Like Carbon Matryoshka with Strong

Stability and Particular Three-Center Two-Electron π Bonds

Mengyang Li,^{†,#} Yaoxiao Zhao,^{†,#} Zhibin Gao,^{‡,*} Kun Yuan,^{§,*} Xiang Zhao^{†,*}

[†]Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China

[†]Department of Physics, National University of Singapore, Singapore 117551, Republic of Singapore

[§]College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, China

#Authors contributed equally to this work.

*E-mail: xzhao@mail.xjtu.edu.cn (Xiang Zhao); zhibin.gao@nus.edu.sg (Zhibin Gao); yuankun@tsnu.edu.cn_(Kun Yuan)

Table of Contents

1.	Optimal conformations of C_nH_2 (2 \leq n \leq 8) Figure S1S3
2.	Stiffness tensor matrixes for L-2Gy and L-3Gy Table S1S3
3.	Crystal structures and Localized orbital locator (LOL) maps for graphene and α Gy (L-1Gy) Figure S2
4.	Molecular AdNDP orbitals for the optimized benzene (C ₆ H ₆) Figure S3S5
5.	Molecular AdNDP orbitals for the optimized C ₁₈ H ₆ Figure S4S6
6.	Partial Molecular AdNDP orbitals for the optimized $C_{30}H_6$ Figure S5S7
7.	Band structure of L-2Gy based on the HSE06 Figure S6S8
8.	Stiffness tensor matrixes for graphene and α Gy (L-1Gy) Table S2S8
9.	Possible absorbed configurations of H atom on L-2Gy Figure S7
10.	Calculational Details
11.	Fractional coordinates for primitive cell of L-2Gy and L-3Gy

1. Optimal conformations of C_nH_2 (2 \le n \le 8)

Figure S1 Optimal conformations of C_nH_2 ($2 \le n \le 8$) based on the B3LYP/6-311G(d,p).

2. Stiffness tensor matrixes for L-2Gy and L-3Gy

 Table S1 Stiffness tensor C_{ij} in GPa matrixes for L-2Gy and L-3Gy.

L-2Gy						
	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆
C1	25.029	23.359	0.445	0.000	0.000	0.000
C ₂	23.359	25.029	0.445	0.000	0.000	0.000
C ₃	0.445	0.445	1.557	0.000	0.000	0.000
C ₄	0.000	0.000	0.000	0.835	0.000	0.000
C ₅	0.000	0.000	0.000	0.000	0.523	0.000
C ₆	0.000	0.000	0.000	0.000	0.000	0.523
L-3Gy						
	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆
C1	18.615	18.209	0.336	0.000	0.000	0.000
C ₂	18.209	18.615	0.336	0.000	0.000	0.000
C ₃	0.336	0.336	1.161	0.000	0.000	0.000
C_4	0.000	0.000	0.000	0.203	0.000	0.000
C ₅	0.000	0.000	0.000	0.000	0.331	0.000
C ₆	0.000	0.000	0.000	0.000	0.000	0.331

3. Crystal structures and Localized orbital locator (LOL) maps for graphene and αGy (L-1Gy)

Figure S2 Crystal structures of a) graphene and c) α Gy (L-1Gy). The marginal threefold carbon atoms are saturated by hydrogen atoms and their primitive cells are marked by a red box. Localized orbital locator (LOL) maps for b) graphene and d) α Gy (L-1Gy) with isovalue of 0.05.

4. Molecular AdNDP orbitals for the optimized benzene (C_6H_6)

Figure S3 Molecular orbitals for the optimized benzene (C_6H_6) based on the AdNDP method.

2.00 e⁻

 $3 \times \frac{2.00}{6c-2e} e^{-\pi}$ bonds

2.00 e⁻

5. Molecular AdNDP orbitals for the optimized $C_{18}H_6$

Figure S4 Molecular orbitals for the optimized $C_{18}H_6$ based on the AdNDP method.

Figure S5 Molecular orbitals of 2c-2e σ bonds for the optimized C₃₀H₆ based on the AdNDP method.

7. Band structure of L-2Gy based on the HSE06

Figure S6 Band structure of L-2Gy based on the HSE06 level.

8. Stiffness tensor matrixes for graphene and αGy (L-1Gy)

Table S2 Stiffness tensor C_{ij} in GPa matrixes for graphene and αGy (L-1Gy).

Graphene						
	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆
C1	145.979	27.143	1.287	0.000	0.000	0.000
C ₂	27.143	145.979	1.287	0.000	0.000	0.000
C ₃	1.287	1.287	4.467	0.000	0.000	0.000
C ₄	0.000	0.000	0.000	59.418	0.000	0.000
C ₅	0.000	0.000	0.000	0.000	1.327	0.000
C ₆	0.000	0.000	0.000	0.000	0.000	1.327
αGy						
	C1	C ₂	C ₃	C ₄	C ₅	C ₆
C ₁	40.194	34.574	0.685	0.000	0.000	0.000
C ₂	34.574	40.194	0.685	0.000	0.000	0.000
C ₃	0.685	0.685	2.380	0.000	0.000	0.000
C_4	0.000	0.000	0.000	2.810	0.000	0.000
C ₅	0.000	0.000	0.000	0.000	0.754	0.000
C ₆	0.000	0.000	0.000	0.000	0.000	0.754

9. Possible absorbed configurations of H atom on L-2Gy

Figure S7 Possible absorbed configurations of H atom on L-2Gy including their relative energies marked in pink shown in brackets. H atoms are on the top of corresponding carbon atoms for configurations in **1**, **2**, and **3**. The configurations of **4**, **5**, and **6** are that H atoms in the plane of L-2Gy.

10 Calculational Details

The hydrogen evolution reaction (HER) performance is evaluated with the free energy of absorbed

hydrogen atom under equilibrium conditions, which is defined as^[1-4]

$$\Delta G_H = E_{ads} + \Delta ZPE - T\Delta S$$

where E_{ads} is the adsorption energy of the hydrogen atom, Δ ZPE is the change of zero-point energy of absorbed H and that of free H₂(g), $T\Delta S$ is the difference of entropy of absorbed H and that of H₂(g). We employ the ZPE and TS of free H₂ gas molecule from previous work, while for the adsorbed H, the free energy corrections were calculated using the corresponding formula including ZPE and S obtained from T. Vegge's work using vibrational frequency based on the harmonic approximation. The E_{ads} , Δ ZPE, and T Δ S are calculated with the following equations^[5]

$$E_{ads} = E_{*_{H}} - E_{S} - 1/2E_{H_{2}}$$
$$\Delta ZPE = ZPE_{*_{H}} - 1/2ZPE_{H_{2}}$$
$$T\Delta S = TS_{vi-*_{H}} - 1/2TS_{H_{2}}$$

where E_{*H} and E_{s} represent the total energy of L-2Gy with and without adsorbed H, respectively, and

 E_{H_2} is the energy of the hydrogen molecule in the gas phase. ZPE_{*H} and ZPE_{H_2} are on behalf of the

zero-point energy of absorbed H and that of free H₂(g), respectively. $TS_{\nu i - *H}$ is the vibrational entropy

of absorbed H while TS_{H_2} is the entropy of H₂(g) of 0.41 eV. The previous report shows that the

vibrational entropy in the absorbed state is small meaning that the entropy of adsorption of 1/2H₂ is

 $\Delta S_{H} \cong -1/2S_{H_{2,[6]}}$ Thus, the T Δ S here is calculated to be -0.205 eV.

11 Fractional coordinates for 14 and 20 independent carbon atoms for optimized primitive cell of L-2Gy and L-3Gy, respectively.

L-2Gy			
0.666666666666643	0.33333333333333357	0.5000000000000000000000000000000000000	
0.33333333333333357	0.66666666666643	0.5000000000000000000000000000000000000	
0.5961842373225368	0.4038157626774633	0.5000000000000000000000000000000000000	
0.4038157626774633	0.5961842373225368	0.5000000000000000000000000000000000000	
0.5961842373225368	0.1923684746450664	0.5000000000000000000000000000000000000	
0.4038157626774633	0.8076315253549337	0.5000000000000000	
0.8076315253549337	0.4038157626774633	0.5000000000000000000000000000000000000	
0.1923684746450664	0.5961842373225368	0.5000000000000000000000000000000000000	
0.5336413338968912	0.4663586661031087	0.5000000000000000000000000000000000000	
0.4663586661031087	0.5336413338968912	0.5000000000000000000000000000000000000	
0.5336413338968912	0.0672826677937754	0.5000000000000000000000000000000000000	
0.4663586661031087	0.9327173322062244	0.5000000000000000000000000000000000000	
0.9327173322062244	0.4663586661031087	0.5000000000000000000000000000000000000	
0.0672826677937754	0.5336413338968912	0.5000000000000000	
L-3Gy			
0.666666700000004	0.3333333380000028	0.50000000000000000	
0.3333333030000034	0.666666605000032	0.5000000000000000000000000000000000000	
0.6159786295070929	0.3840212944929078	0.5000000000000000000000000000000000000	
0.3840213474929087	0.6159787205070898	0.5000000000000000000000000000000000000	
0.6159786905070944	0.2319573190141839	0.5000000000000000000000000000000000000	
0.3840212984929082	0.7680426599858180	0.5000000000000000000000000000000000000	
0.7680426829858163	0.3840213294929072	0.5000000000000000000000000000000000000	
0.2319573380141819	0.6159786495070946	0.5000000000000000000000000000000000000	
0.4773309774685701	0.5226689635314288	0.5000000000000000000000000000000000000	
0.5226690125314292	0.4773310154685661	0.5000000000000000000000000000000000000	
0.4773310154685661	0.9546620319371358	0.5000000000000000000000000000000000000	
0.5226689895314309	0.0453379790628617	0.5000000000000000000000000000000000000	
0.0453379550628668	0.5226689635314288	0.50000000000000000	
0.9546620339371360	0.4773310154685661	0.5000000000000000000000000000000000000	
0.5708670658543540	0.4291329401456463	0.5000000000000000000000000000000000000	
0.4291329061456436	0.5708670038543561	0.50000000000000000	
0.5708669838543544	0.1417341537087101	0.50000000000000000	
0.4291329351456495	0.8582658082912938	0.5000000000000000	

References

- Jalil, A.; Zhuo, Z. W.; Sun, Z. T.; Wu, F.; Wang, C.; Wu, X. J.; A Phosphorene-Like InP 3 Monolayer: Structure, Stability, and Catalytic Properties toward the Hydrogen Evolution Reaction. J. Mater. Chem. A 2020, 8, 1307-1314.
- [2] Tan, T. L.; Wang, L. L.; Johnson, D. D.; Bai, K.; A Comprehensive Search for Stable Pt–Pd Nanoalloy Configurations and Their Use as Tunable Catalysts. *Nano Lett.* 2012, *12*, 4875-4880.
- [3] Mir, S. H.; Chakraborty, S.; Jha, P. C.; Wärnå, J.; Soni, H.; Jha, P. K.; Ahuja, R.; Two-Dimensional Boron: Lightest Catalyst for Hydrogen and Oxygen Evolution Reaction. *Appl. Phys. Lett.* **2016**, *109*, 053903.
- [4] Liu, Y. P.; Yu, G. T.; Li, G. D.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X.; Coupling Mo₂C with Nitrogen-Rich Nanocarbon Leads to Efficient Hydrogen-Evolution Electrocatalytic Sites. *Angew. Chem. Int. Ed.* 2015, *127*, 10902-10907;
- Howalt, J. G.; Bligaard, T.; Rossmeisl, J.; Vegge, T.; DFT Based Study of Transition Metal Nano-Clusters for Electrochemical NH₃
 Production. *Phys. Chem. Chem. Phys.* 2013, *15*, 7785-7795.
- [6] Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J.; Pandelov, S.; Stimming, U.; Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23-J26.