Supporting Information

Gaseous infrared spectra of the simplest geminal diol CH₂(OH)₂ and the isotopic analogues in the hydration of formaldehyde

Hung-Yang Jain, Chih-Tsun Yang and Li-Kang Chu*

Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.

Corresponding Author

*To whom correspondence should be addressed. Phone: 886-3-5715131 ext. 33396. Fax: 886-3-5711082. E-mail: lkchu@mx.nthu.edu.tw

Table of contents

Supplementary Tables

Table S1. The partial pressures (Torr) of the samples for infrared spectroscopic measurements.

Table S2. Optimized molecular structures of *trans*-CH₂(OH)₂ and *cis*-CH₂(OH)₂ compared with CCSD(T) method.

Table S3. Optimized molecular structures of *trans*-CH₂(OH)₂ compared with MP2 method.

Table S4. The equilibrium rotational constants of *trans*-CH₂(OH)₂ predicted with B3LYP and other methods.

Table S5. The difference of predicted absolute energies of *trans*- and *cis*-CH₂(OH)₂.

Table S6. Optimized molecular structures of *trans*- and *cis*-CH₂(OH)₂ isotopic analogues.

Table S7. Predicted absolute energies of *trans*- and *cis*-methanediol isotopic analogues and the energy difference $\Delta E = trans - cis$.

Table S8. Predicted vibrational wavenumber and the IR intensity of CH₂(OH)₂.

Table S9. Predicted vibrational wavenumber and the IR intensity of CD₂(OH)₂.

Table S10. Predicted vibrational wavenumber and the IR intensity of CH₂(OD)₂.

Table S11. Predicted vibrational wavenumber and the IR intensity of CD₂(OD)₂.

Table S12. Rotational parameters of *trans*-CH₂(OH)₂ at v'' = 0 and v' = 1 for different vibrational modes.

Table S13. Rotational parameters of *trans*-CD₂(OH)₂ at v'' = 0 and v' = 1 for different vibrational modes.

Supplementary Figures

Figure S1. The pressures of the pure substances versus the integrated absorbances.

Figure S2. Dipole derivatives of relevant vibrations of *trans*-CH₂(OH)₂ and *trans*-CD₂(OH)₂.

Figure S3. Gaseous IR absorption spectra of H₂O, CH₂O, and mixture of H₂O and CH₂O with more deposit.

	CH ₂ (OH) ₂	CD ₂ (OH) ₂	CH ₂ (OD) ₂	CD ₂ (OD) ₂
P(H ₂ O)	20.1	26.3		
$P(D_2O)$			12.2	19.3
P(CH ₂ O)	9.8		6.9	
P(CD ₂ O)		9.6		8.6
P(N ₂)	11.0	69.0	8.9	69.0
Total pressure	40.9	104.9	28.0	96.9

 Table S1. The partial pressures (Torr) of the samples for the infrared spectroscopic measurements.

Table S2. Optimized molecular structures of *trans*-CH₂(OH)₂ and *cis*-CH₂(OH)₂ determined with B3LYP/aug-cc-pVTZ in vacuum. The predictions at the level of CCSD(T) using the basis set aug-cc-pVTZ [1] are included for comparison. (bond length (*d*): angstrom; bond angle (\angle): degree; dihedral angle (ϕ): degree).

Parameter	ti	rans-CH2(OH))2	cis-CH ₂ (OH) ₂			
	H ₂	0, 0, C H ₄ H ₃	H	O,	H ₂ O ₁ C H ₃	H	
	B3LYP	CCSD(T)*	Δ(%)	B3LYP	CCSD(T)*	Δ(%)	
Point group	C_1	C_2		C_1	Cs		
$d(C-O_1)$	1.4082	1.4085	-0.021	1.4092	1.4092	0.000	
$d(C-O_2)$	1.4081		-0.028	1.4091		-0.007	
$d(O_1-H_1)$	0.9635	0.9639	-0.042	0.9620	0.9624	-0.042	
$d(O_2-H_2)$	0.9636		-0.031	0.9620		-0.042	
<i>d</i> (C–H ₃)	1.0914	1.0922	-0.073	1.0954	1.0961	-0.064	
$d(C-H_4)$	1.0914	1.0922	-0.073	1.0866	1.0876	-0.092	
∠O ₁ CO ₂	112.9942	112.61	0.340	113.9044	113.61	0.258	
∠H ₁ O ₁ C	108.5327	107.42	1.025	109.9392	108.87	0.973	
∠H ₂ O ₂ C	108.5351		1.027	109.9427	100107	0.976	
∠H ₃ CO ₂	105.1985	105.29	-0.087	110.4953	110.47	0.023	
∠H ₃ CO ₁	111.7888		5.813	110.4816		0.010	
∠H₄CO1	105.2043	105.29	-0.081	105.8779	106.00	-0.115	
∠H₄CO ₂	111.7861		5.811	105.8708		-0.122	
ϕ H ₁ O ₁ CO ₂	62.7796	61.75	1.640	79.2727	78.63	0.811	
ϕ H ₂ O ₂ CO ₁	62.7907	61.75	1.657	-79.0590	-78.63	0.543	
ØH3CO2O1	122.2166	122.08	0.112	125.0489	124.79	0.207	
¢H₄CO₁O₂	122.2171	122.08	0.112	115.9168	116.0	-0.072	

*: Ref. 1; $\Delta = 100 \times [B3LYP - CCSD(T)] / B3LYP$.

Table S3. Optimized molecular structures of *trans*-CH₂(OH)₂ determined with B3LYP/aug-ccpVTZ in vacuum. The predictions at the level of MP2 using the basis set aug-cc-pVTZ [2] are included for comparison. (bond length (*d*): angstrom; bond angle (\angle): degree).

Parameter	trans-CH ₂ (OH) ₂ (C ₁)								
	H2	H							
	B3LYP	MP2*	diff. (%)						
<i>d</i> (C–O ₁)	1.4082	1.4066	0.114						
<i>d</i> (C–O ₂)	1.4081	1.4065	0.114						
<i>d</i> (C–H ₃)	1.0914	1.0890	0.220						
<i>d</i> (C–H ₄)	1.0914	1.0890	0.220						
$d(O_1-H_1)$	0.9635	0.9639	-0.042						
<i>d</i> (O ₂ –H ₂)	0.9636	0.9639	-0.031						
∠H ₁ O ₁ C	108.5327	107.3950	1.048						
∠H ₂ O ₂ C	108.5351	107.3927	1.053						
∠O ₁ CO ₂	112.9942	112.7767	0.192						
∠H ₃ CH ₄	109.9782	110.2472	-0.245						

*: Ref.2; $\Delta = 100 \times \overline{[B3LYP - MP2] / B3LYP}$.

Method	Rotational constant (cm ⁻¹)						
	А	В	С				
B3LYP	1.4001	0.3375	0.2996				
B3LYP ^a	1.4000	0.3375	0.2995				
MP2 ^{<i>a</i>}	1.3977	0.3401	0.3014				
QCISD ^{<i>a</i>}	1.3973	0.3419	0.3028				
$CCSD(T)^{a}$	1.3899	0.3397	0.3008				
MP2 ^b	1.3981	0.3399	0.3013				

Table S4. The equilibrium rotational constants of *trans*-CH₂(OH)₂ predicted with B3LYP and other methods [1,2] using the same basis set aug-cc-pVTZ.

^a: Ref. 1; ^b: Ref. 2. ^bThese values were not specified to correspond to the rotational constants at equilibrium or vibrationally-ground state.

Table S5. Comparison of the difference of predicted absolute energies (ΔE) and Gibb's free energies (ΔG) of *trans*-CH₂(OH)₂ and *cis*-CH₂(OH)₂: ΔE or $\Delta G = trans$ -CH₂(OH)₂ - *cis*-CH₂(OH)₂. The basis set aug-cc-pVTZ was employed in this work and the previous report [1].

Method	ΔE in kcal mol ⁻¹	ΔG (298 K) in kcal mol ⁻¹
B3LYP	-2.20	-2.01
B3LYP*	-2.26	-1.65
MP2*	-2.38	-1.72
QCISD*	-2.35	-1.68

*: Ref. 1.

parameter		trans-me	thanediol			<i>cis</i> -metl	nanediol	
	CH ₂ (OH) ₂	CD ₂ (OH) ₂	$CH_2(OD)_2$	$CD_2(OD)_2$	CH ₂ (OH) ₂	$CD_2(OH)_2$	$CH_2(OD)_2$	$CD_2(OD)_2$
$d(C-O_1)$	1.4082	1.4082	1.4082	1.4082	1.4092	1.4092	1.4092	1.4092
$d(C-O_2)$	1.4081	1.4081	1.4081	1.4081	1.4091	1.4091	1.4091	1.4091
$d(O_{1-}H_{1})$	0.9635	0.9635	0.9635	0.9635	0.9620	0.9620	0.9620	0.9620
$d(O_2 - H_2)$	0.9636	0.9636	0.9636	0.9636	0.9620	0.9620	0.9620	0.9620
$d(C-H_3)$	1.0914	1.0914	1.0914	1.0914	1.0954	1.0954	1.0954	1.0954
$d(C-H_4)$	1.0914	1.0914	1.0914	1.0914	1.0866	1.0866	1.0866	1.0866
∠O ₁ CO ₂	112.9942	112.9942	112.9942	112.9942	113.9044	113.9044	113.9044	113.9044
$\angle H_1O_1C$	108.5327	108.5327	108.5327	108.5327	109.9392	109.9392	109.9392	109.9392
∠H ₂ O ₂ C	108.5351	108.5351	108.5351	108.5351	109.9427	109.9427	109.9427	109.9427
∠H ₃ CO ₂	105.1985	105.1985	105.1985	105.1985	110.4953	110.4953	110.4953	110.4953
∠H ₃ CO ₁	111.7888	111.7888	111.7888	111.7888	110.4816	110.4816	110.4816	110.4816
∠H₄CO1	105.2043	105.2043	105.2043	105.2043	105.8779	105.8779	105.8779	105.8779
∠H₄CO ₂	111.7861	111.7861	111.7861	111.7861	105.8708	105.8708	105.8708	105.8708
$\phi H_1O_1CO_2$	62.7796	62.7796	62.7796	62.7796	79.2727	79.2727	79.2727	79.2727
ØH ₂ O ₂ CO ₁	62.7907	62.7907	62.7907	62.7907	-79.0590	-79.0590	-79.0590	-79.0590
ØH ₃ CO ₂ O ₁	122.2166	122.2166	122.2166	122.2166	125.0489	125.0489	125.0489	125.0489
ØH₄CO₁O₂	122.2171	122.2171	122.2171	122.2171	115.9168	115.9168	115.9168	115.9168

Table S6. Optimized molecular structures of trans- and cis-CH2(OH)2, CD2(OH)2, CD2(OH)2, and CD2(OD)2 determined with

B3LYP/aug-cc-pVTZ. (bond length (*d*): angstrom; bond angle (\angle): degree; dihedral angle (ϕ): degree).

Table S7. The absolute energies and Gibb's free energy difference at 298 K (hartrees) of *trans*and *cis*-CH₂(OH)₂, CD₂(OH)₂, CH₂(OD)₂, and CD₂(OD)₂ and ΔE or $\Delta G = trans - cis$ predicted using B3LYP/aug-cc-pVTZ including zero-point energy. The values of ΔE and ΔG in kcal mol⁻¹ are presented in the parentheses.

Conformer	Molecules								
-	CH ₂ (OH) ₂	CD ₂ (OH) ₂	CH ₂ (OD) ₂	$CD_2(OD)_2$					
trans	-190.9808	-190.9877	-190.9875	-190.9943					
cis	-190.9773	-190.9841	-190.9838	-190.9907					
٨F	-0.0035	-0.0036	-0.0037	-0.0036					
$\Delta \mathbf{E}$	(-2.20)	(-2.26)	(-2.32)	(-2.26)					
trans	-191.0058	-191.0129	-191.0129	-191.0200					
cis	-191.0026	-191.0097	-191.0096	-191.0168					
AC (208 K)	-0.0032	-0.0032	-0.0033	-0.0032					
40 (298 K)	(-2.01)	(-2.01)	(-2.07)	(-2.01)					

	Vibrational mode	trans-CH ₂	(OH) ₂		Vibrational mode	cis-CH ₂ (OH) ₂
		B3LYP/aug-	cc-pVTZ	-		B3LYP/aug-	cc-pVTZ
		Wavenumber	Intensity	_		Wavenumber	Intensity
ν_1	OH stret.	3795 (3617)	24 (27)	ν_1	OH stret.	3812 (3623)	19 (18)
v ₂	OH stret.	3794 (3612)	44 (28)	v_2	OH stret.	3810 (3622)	39 (31)
v ₃	CH ₂ stret.	3077 (2937)	38 (43)	v ₃	CH ₂ stret.	3121 (2980)	21 (26)
ν ₄	CH ₂ stret.	3031 (2897)	55 (36)	ν_4	CH ₂ stret.	2993 (2864)	71 (53)
ν5	CH ₂ sciss.	1526 (1486)	0 (0)	ν5	CH ₂ sciss.	1514 (1478)	0 (0)
ν ₆	CH ₂ wag	1442 (1413)	49 (55)	v ₆	CH ₂ wag	1436 (1404)	23 (23)
v_7	CH ₂ twist	1388 (1354)	3 (3)	v_7	CH ₂ rock	1404 (1363)	20 (14)
ν_8	COH bend	1368 (1311)	34 (15)	ν_8	CH ₂ twist	1369 (1320)	3 (1)
v 9	COH bend + CH ₂ wag	1202 (1176)	2 (2)	v 9	COH bend + CH ₂ wag	1162 (1149)	75 (45)
v_{10}	OCO asym. stret.	1045 (1012)	285 (289)	ν_{10}	OCO sym. stret.	1053 (1029)	33 (23)
v_{11}	OCO sym. stret.	1030 (1003)	92 (92)	ν_{11}	OCO asym. stret.	1035 (1004)	307 (304)
v ₁₂	CH ₂ rock	1006 (997)	5 (3)	v ₁₂	CH ₂ rock	993 (980)	50 (56)
v 13	OCO bend	554 (532)	60 (45)	v 13	OCO bend	534 (526)	24 (8)
v_{14}	COH torsion	376 (362)	61 (80)	v_{14}	COH torsion	381 (307)	117 (99)
v ₁₅	COH torsion	367 (316)	160 (135)	v ₁₅	COH torsion	178 (63)	71 (41)

Table S8. Harmonic wavenumber (cm^{-1}) and the IR intensity $(km mol^{-1})$ of $CH_2(OH)_2$ predicted using B3LYP/aug-cc-pVTZ. Anharmonic wavenumber and corresponding infrared intensity are provided in the parentheses.

Vibrational mode		trans-CD	2(OH)2	I) ₂ Vibrational mod		cis-CD ₂ (OH) ₂	
		B3LYP/aug-	3LYP/aug-cc-pVTZ			B3LYP/aug	-cc-pVTZ
		Wavenumber	Intensity	-		Wavenumber	Intensity
ν_1	OH stret.	3795 (3618)	24 (27)	ν_1	OH stret.	3812 (3624)	18 (17)
v ₂	OH stret.	3794 (3612)	45 (29)	v ₂	OH stret.	3810 (3622)	40 (31)
v ₃	CD ₂ stret.	2295 (2214)	28 (29)	v 3	CD ₂ stret.	2317 (2219)	18 (16)
ν ₄	CD ₂ stret.	2199 (2082)	40 (23)	v_4	CD ₂ stret.	2182 (2071)	49 (25)
ν5	COH bend	1329 (1283)	98 (77)	ν5	COH bend + CD ₂ rock	1355 (1315)	24 (21)
ν ₆	COH bend + CD_2 scis.	1304 (1270)	8 (6)	ν ₆	COH bend + CD ₂ twist	1243 (1201)	80 (58)
v_7	CD ₂ sciss.	1134 (1110)	25 (23)	v_7	CD ₂ sciss.	1137 (1118)	19 (14)
v ₈	CD ₂ wag	1118 (1088)	144 (128)	ν_8	CD ₂ wag	1112 (1084)	157 (135)
ν9	OCO sym. stret.	994 (973)	54 (59)	ν9	OCO sym. stret.	992 (973)	40 (41)
v_{10}	OCO asym. stret.	982 (963)	113 (127)	ν_{10}	OCO asym. stret.	984 (962)	148 (159)
v_{11}	CD ₂ twist	915 (895)	5 (2)	ν_{11}	CD ₂ twist	925 (903)	24 (21)
v ₁₂	CD ₂ rock	846 (834)	22 (20)	v 12	CD ₂ rock	842 (833)	14 (15)
v 13	OCO bend	548 (526)	62 (47)	v 13	OCO bend	526 (519)	25 (8)
v_{14}	COH torsion	374 (362)	59 (77)	v_{14}	COH torsion	376 (303)	123 (94)
v ₁₅	COH torsion	362 (312)	154 (132)	v 15	COH torsion	178 (65)	70 (42)

Table S9. Harmonic wavenumber (cm^{-1}) and the IR intensity $(km mol^{-1})$ of $CD_2(OH)_2$ using predicted B3LYP/aug-cc-pVTZ. Anharmonic wavenumber and corresponding infrared intensity are provided in the parentheses.

	Vibrational mode	trans-CH	2(OD)2		Vibrational mode	cis-CH ₂ (OD) ₂	
		B3LYP/aug-	-cc-pVTZ	-		B3LYP/aug-	-cc-pVTZ
		Wavenumber	Intensity	-		Wavenumber	Intensity
ν_1	CH ₂ stret.	3078 (2936)	34 (40)	ν_1	CH ₂ stret.	3122 (2983)	17 (22)
v_2	CH ₂ stret.	3032 (2899)	52 (35)	V 2	CH ₂ stret.	2993 (2867)	71 (52)
V 3	OD stret.	2762 (2664)	19 (19)	V 3	OD stret.	2775 (2675)	14 (13)
ν4	OD stret.	2761 (2669)	31 (19)	ν4	OD stret.	2773 (2674)	28 (21)
ν5	CH ₂ sciss.	1526 (1488)	0 (0)	V 5	CH ₂ sciss.	1514 (1477)	0 (0)
ν ₆	CH ₂ wag	1430 (1398)	20 (17)	v_6	CH ₂ wag	1432 (1403)	16 (14)
v_7	CH ₂ twist	1326 (1291)	0 (0)	v_7	CH ₂ twist	1334 (1298)	0 (0)
ν_8	COD bend + CH ₂ rock	1235 (1208)	15 (14)	ν_8	$COD bend + CH_2 rock$	1244 (1213)	7 (7)
ν9	OCO sym. stret.	1069 (1040)	43 (38)	V 9	OCO sym. stret.	1043 (1026)	58 (47)
ν_{10}	OCO asym. stret.	1042 (1008)	270 (262)	v_{10}	OCO asym. stret.	1034 (1006)	293 (258)
v_{11}	COD bend + CH ₂ twist	919 (900)	32 (33)	v_{11}	COD bend + CH ₂ twist	878 (861)	48 (52)
v 12	$COD bend + CH_2 rock$	833 (826)	23 (22)	v 12	$COD \ bend + CH_2 \ rock$	849 (836)	18 (17)
V 13	OCO bend	519 (505)	38 (32)	v 13	OCO bend	523 (509)	24 (16)
v_{14}	COD torsion	283 (240)	95 (70)	v_{14}	COD torsion	284 (241)	54 (49)
v_{15}	COD torsion	273 (269)	37 (57)	v ₁₅	COD torsion	131 (44)	39 (22)

Table S10. Harmonic wavenumber (cm^{-1}) and the IR intensity $(km mol^{-1})$ of $CH_2(OD)_2$ predicted using B3LYP/aug-cc-pVTZ. Anharmonic wavenumber and corresponding infrared intensity are provided in the parentheses.

	Vibrational mode	trans-CD2	2(OD)2		Vibrational mode	cis-CD ₂ ((OD) ₂
		B3LYP/aug-	cc-pVTZ	-		B3LYP/aug-	cc-pVTZ
		Wavenumber	Intensity	_		Wavenumber	Intensity
ν_1	OD stret.	2762 (2670)	16 (19)	ν_1	OD stret.	2775 (2676)	14 (14)
v ₂	OD stret.	2762 (2664)	28 (19)	v_2	OD stret.	2774 (2674)	25 (20)
v ₃	CD ₂ stret.	2294 (2184)	27 (11)	v 3	CD ₂ stret.	2316 (2244)	19 (14)
ν ₄	CD ₂ stret.	2199 (2079)	42 (25)	v_4	CD ₂ stret.	2182 (2073)	49 (29)
ν5	CD ₂ sciss.	1161 (1140)	12 (10)	ν5	CD ₂ sciss.	1152 (1130)	5 (5)
ν ₆	CD ₂ wag	1132 (1102)	177 (140)	ν ₆	COD bend + CD_2 sciss.	1116 (1088)	21 (19)
v_7	$COD bend + CD_2 wag$	1097 (1072)	18 (19)	v_7	CD ₂ wag	1112 (1085)	168 (125)
ν_8	COD bend + CD ₂ twist	1033 (1014)	0 (0)	ν_8	CD ₂ twist	1009 (982)	14 (45)
v 9	OCO sym. stret.	988 (965)	46 (46)	v 9	OCO sym. stret.	989 (970)	40 (39)
ν_{10}	OCO asym. stret.	980 (958)	112 (125)	ν_{10}	OCO asym. stret.	981 (959)	135 (114)
v_{11}	CD ₂ twist	858 (844)	10 (11)	v_{11}	COD bend + CD_2 twist	834 (819)	41 (42)
v ₁₂	CD ₂ rock	744 (717)	24 (15)	v ₁₂	$COD bend + CD_2 rock$	754 (755)	9 (6)
v 13	OCO bend	514 (500)	39 (33)	v 13	OCO bend	514 (501)	25 (17)
v_{14}	COD torsion	277 (235)	90 (70)	v_{14}	COD torsion	278 (236)	58 (48)
v_{15}	COD torsion	272 (269)	37 (53)	v 15	COD torsion	131 (46)	39 (23)

Table S11. Harmonic wavenumber (cm^{-1}) and the IR intensity $(km mol^{-1})$ of $CD_2(OD)_2$ predicted using B3LYP/aug-cc-pVTZ. Anharmonic wavenumber and corresponding infrared intensity are provided in the parentheses.

Table S12. Rotational parameters of *trans*-CH₂(OH)₂ at ground state v'' = 0 and first vibrationally-excited state v' = 1 for different vibrational modes.

Vibrational mode											
		Rotational constant (cm ⁻¹)									
		А	В	С	A' / A″	B' / B"	C' / C″				
	v"=0	1.3859	0.3350	0.2966							
OCO asym. stret.	v' ₁₀ =1	1.3761	0.3337	0.2945	0.9929	0.9961	0.9929	<i>a</i> -type			
OCO sym. stret.	v' ₁₁ =1	1.3921	0.3335	0.2959	1.0045	0.9955	0.9976	<i>b</i> -type			

Table S13. Rotational parameters of *trans*-CD₂(OH)₂ at ground state v'' = 0 and first vibrationally-excited state v' = 1 for different vibrational modes.

Vibrational mode	trans-CD ₂ (OH) ₂							
"	Rotational constant (cm ⁻¹)							Transition type
		А	В	С	A' / A″	B' / B″	C' / C″	
	v"=0	1.0244	0.3245	0.2832				
COH bending	v ₅ =1	1.0265	0.3246	0.2832	1.0020	1.0003	1.0000	<i>a</i> -type : <i>c</i> -type = 0.9 : 0.1
CD ₂ wagging	v ₈ =1	1.0227	0.3231	0.2818	0.9983	0.9957	0.9951	a-type
OCO sym. stret.	v ₉ =1	1.0256	0.3235	0.2823	1.0012	0.9969	0.9968	<i>b</i> -type
OCO asym. stret.	v' ₁₀ =1	1.0194	0.3241	0.2826	0.9951	0.9988	0.9979	<i>a</i> -type

Figure S1. The pressures of the pure substances versus the integrated absorbances at given wavenumbers for deriving the partial pressures in the mixed samples.

Figure S2. Dipole derivatives of relevant vibrations of *trans*-CH₂(OH)₂ and *trans*-CD₂(OH)₂.

Figure S3. Gaseous IR absorption spectra of (A) H_2O , (B) CH_2O , and (C) mixture of (A) and (B) in the bath of N_2 . The gray shadow denotes the IR spectrum of the deposit component on the BaF₂ window. (D) Difference spectrum by subtracting (C) with (A), (B), and the deposited component and multiplied by 2.5 to fit the scales in (A) and (B).

REFERENCES

- ¹ C. Barrientos, P. Redondo, H. Martínez and A. Largo, *Astrophys. J.*, 2014, **784**, 132.
- ² B. M. Hays and S. L. W. Weaver, J. Phys. Chem. A, 2013, **117**, 7142–7148.