Supplementary Information for: Evaluation of Mixed Quantum-Classical Molecular Dynamics on *cis*-Azobenzene Photoisomerization

Diandong Tang, Lin Shen* and Wei-Hai Fang

Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China

E-mail: lshen@bnu.edu.cn

Collective Dynamics of PC-FBD & PC-EBD

Table S1: Simulation results using PC-FBD and PC-EBD in comparison with experimental results.

MQC Method	Decoherence	Rescaling	S_1 lifetime \pm standard error (fs)	trans-isomer yield
FSSH	PC-EBD	E+	93.0 ± 0.4	0.522
		$E\mathbf{p_h}+$	65.0 ± 0.4	0.675
		$E\mathbf{p_h}-$	67.3 ± 0.4	0.570
	PC-FBD	E+	92.5 ± 0.3	0.486
		$E\mathbf{p_h}+$	66.1 ± 0.4	0.665
		$E\mathbf{p_h}-$	67.4 ± 0.4	0.575
expr.			100-170	0.40-0.75

Figure S1: Time-dependent electronic state populations obtained using PC-EBD and PC-FBD.

Representative Trajectories for all Simulations

FSSH/E+	Figure 3(a)	EMF	Figure $5(a)$
$\mathrm{FSSH}/E\mathbf{p_h}+$	Figure S2	PC-EMF	Figure $5(b)$
$\mathrm{FSSH}/E\mathbf{p_h}-$	Figure S3	MFSD	Figure $5(c)$
$\mathrm{EBD}/\mathrm{E+}$	Figure S4	PC-MFSD	Figure S20
$\mathrm{EBD}/E\mathbf{p_h}+$	Figure S5	PC-BCMF	Figure $5(d)$
$\mathrm{EBD}/E\mathbf{p_h}-$	Figure S6	$QTMF^{a}$	Figure $5(e)$
FBD/E+	Figure $3(c)$	$QTMF^{b}$	Figure S21
$\mathrm{FBD}/E\mathbf{p_h}+$	Figure $4(a)$	$\mathrm{MM}/\mathrm{SQC}^c$	Figure $6(a)$
$\mathrm{FBD}/E\mathbf{p_h}-$	Figure $4(b)$	$\mathrm{MM}/\mathrm{SQC}^d$	Figure $6(b)$
PCSH/E+	Figure $3(b)$		
$\mathrm{PCSH}/E\mathbf{p_h}+$	Figure S7		
$\mathrm{PCSH}/E\mathbf{p_h}-$	Figure S8		
BCSH/E+	Figure S9		
$\mathrm{BCSH}/E\mathbf{p_h}+$	Figure S10		
$\mathrm{BCSH}/E\mathbf{p_h}-$	Figure S11		
PC-BCSH/E+	Figure 3(d)		
$PC-BCSH/E\mathbf{p_h}+$	Figure S12		
$PC-BCSH/Ep_h-$	Figure S13		
PC-EBD/E+	Figure S14		
$ ext{PC-EBD}/E\mathbf{p_h}+$	Figure S15		
$ ext{PC-EBD}/E\mathbf{p_h}-$	Figure S16		
PC-FBD/E+	Figure S17		
$ ext{PC-FBD}/E\mathbf{p_h}+$	Figure S18		
$PC-FBD/E\mathbf{p_h}-$	Figure S19		

 Table S2:
 List of Representative Trajectories

(a) Decoherence rate was fixed as 0.001. (b) Decoherence rate was determined on-the-fly. (c) Linear window function with parameter as 0.500. (d) Square window function with parameter as 0.366.

Figure S2: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for $FSSH/Ep_{h}+$.

Figure S3: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for $FSSH/Ep_{h}-$.

Figure S4: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for EBD/E+.

Figure S5: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for EBD/ $E\mathbf{p_h}+$.

Figure S6: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for EBD/ $E\mathbf{p_h}-$.

Figure S7: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for $PCSH/Ep_h+$.

Figure S8: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for $PCSH/Ep_h-$.

Figure S9: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for BCSH/E+.

Figure S10: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for $BCSH/E\mathbf{p_h}+$.

Figure S11: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for $BCSH/Ep_h-$.

Figure S12: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for PC-BCSH/ $E\mathbf{p_h}+$.

Figure S13: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for PC-BCSH/ $E\mathbf{p_h}-$.

Figure S14: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for PC-EBD/E+.

Figure S15: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for PC-EBD/ $E\mathbf{p_h}+$.

Figure S16: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for PC-EBD/ $E\mathbf{p_h}-$.

Figure S17: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for PC-FBD/E+.

Figure S18: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for PC-FBD/ $E\mathbf{p_h}+$.

Figure S19: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for PC-FBD/ $E\mathbf{p_h}-$.

Figure S20: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for PC-MFSD.

Figure S21: Time evolution of adiabatic potential energy (left), electronic populations (middle) and the dihedral angles C1-C2-N1-N2, C2-N1-N2-C3 and N1-N2-C3-C4 (right) for QTMF in which the decoherence rate was determined on-the-fly.

Effects of Momentum Rescaling

Figure S22: Energy gap between S_1 and S_0 plotted as a function of time after hopping event from S_1 to S_0 averaged on all trajectories using different models.

Figure S23: Ratio of frustrated hops in all hopping-back attempts using different decoherence corrections with $E\mathbf{p_h}+$ and $E\mathbf{p_h}-$.

Distribution of Essential Geometry Parameters of Snapshots at which the Hop Occurs

Figure S24: Distribution of C-N-N-C dihedral angle for all hopping events obtained using FSSH (top), FBD (middle) and PC-BCSH (bottom).

Figure S25: Distribution of C-N-N bending angles for all hopping events obtained using FSSH (top), FBD (middle) and PC-BCSH (bottom).

Figure S26: Distribution of the difference between two C-N-N bending angles for all hopping events obtained using FSSH (top), FBD (middle) and PC-BCSH (bottom).

Figure S27: Distribution of C-N-N-C dihedral angle for the last $S_1 \rightarrow S_0$ hopping event for each trajectory using FSSH (top), FBD (middle) and PC-BCSH (bottom).

Data Availability

Source code and research data used in this study are available upon reasonable request to the corresponding author.