Supporting Information

Consecutive Methane Activation Mediated by Single Metal

Boride Cluster Anions NbB4⁻

Ying Li,^a Ming Wang,^a Yong-Qi Ding,^a Chong-Yang Zhao,^{*a} Jia-Bi Ma^{*a}

^aKey Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China

Corresponding Author

*Chong-Yang Zhao, Email: <u>zhaocy1987@iccas.ac.cn</u> *Jia-Bi Ma, Email: <u>majiabi@bit.edu.cn</u>

Contents

- 1. Additional time-of-flight (TOF) mass spectra results. (pages S2)
- 2. Additional density functional theory results. (pages S3-S10)
- 3. References. (pages S11)

Fig. S1 Variations of relative ion intensities of the reactant and product anions in the reactions of (a) NbB_4^- and CH_4 with respect to the CH_4 pressures for 6.6 ms and (b) NbB_4^- and CD_4 with respect to the CD_4 pressures for 8.6 ms. The solid lines are fitted to the experimental data points by using the equations derived with the approximation of the pseudo-first-order reaction mechanism.

	EXP.	Nb–C	В–С	B–H	С–Н	Nb–H	H–H	A.D. ¹
Method		5.43	4.64	3.58	3.51	2.29	4.52	
		±0.15	±0.30	±0.03	±0.001	±0.09		
References		1	2	3	4	5	6	
Hybrid Functionals	B1B95	4.85	4.50	3.39	3.31	2.56	4.38	-0.16
	B1LYP	4.86	4.26	3.42	3.38	2.74	4.44	-0.15
	B3LYP	5.09	4.40	3.47	3.44	2.77	4.50	-0.05
	B3P86	5.19	4.68	3.54	3.54	2.74	4.58	0.05
	B3PW91	4.67	4.60	3.39	3.37	2.55	4.37	-0.17
	M05	6.21	4.50	3.44	3.40	2.37	4.42	0.06
	M052X	3.92	4.42	3.46	3.33	2.47	4.40	-0.33
	PBE1PBE	4.92	4.64	3.33	3.33	2.51	4.25	-0.17
	X3LYP	5.08	4.40	3.47	3.43	2.78	4.47	-0.06
	M06	5.98	4.52	3.53	3.39	2.51	4.38	0.06
	M062X	4.52	4.67	3.49	3.34	2.82	4.41	-0.12
	BH&HLYP	4.21	3.99	3.40	3.31	2.69	4.38	-0.33
	BMK	4.47	4.49	3.45	3.35	2.33	4.36	-0.25
Pure Functionals	M06L	5.70	4.84	3.39	3.32	2.64	4.22	0.02
	BLYP	5.59	4.58	3.44	3.46	2.82	4.31	0.04
	BP86	5.66	4.85	3.51	3.56	2.80	4.56	0.16
	BPBE	5.20	4.84	3.33	3.37	2.54	4.56	-0.02
	BPW91	5.39	4.83	3.35	3.38	2.55	4.31	-0.03
	PBE	5.67	4.97	3.37	3.42	2.61	4.27	0.06
	TPSS	5.32	4.64	3.50	3.53	2.84	4.62	0.08

Table S1. DFT-calculated and experimental bond dissociation energies. The values are in unit of eV.

¹: $A.D. = \frac{\sum (x_i - x_{exp})}{n}$, x_i is the DFT calculated bond dissociation energy and x_{exp} is the experimental value.

The Rice-Ramsperger-Kassel-Marcus theory (RRKM)⁷ was used to calculate the rate constant of traversing transition states from intermediates. For these calculations, the energy (*E*) of the reaction intermediate and the energy barrier (E^{\ddagger}) for each step were needed. The reaction intermediate possesses the vibrational energies (E_{vib}) of ¹NbB₄⁻, ³NbB₄CH₂⁻ and CH₄, the center of mass kinetic energy (E_k), and the binding energy (E_b) which is the energy difference between the separated reactants (¹NbB₄⁻/CH₄ and ³NbB₄CH₂⁻/CH₄) and the reaction complexes. The values of E_{vib} and E_b were taken from the DFT calculations and $E_k = \mu v^2/2$, in which μ is the reduced mass (14.3 and 14.5, respectively), and v is the velocity (\approx 733 m/s and 672 m/s, respectively). The densities and the numbers of states required for RRKM calculations were obtained by the direct count method^{8,9} with the DFT calculated vibrational frequencies under the approximation of harmonic vibrations. According to the DFT calculated energies, the rates of internal conversion ($k_{conversion}$) for processes of ¹19 \rightarrow ¹TS9 in Reaction 1 and ¹119 \rightarrow ¹TS19 in Reaction 2 are 4.5 × 10⁶ s⁻¹ and 8.1 × 10⁶ s⁻¹, respectively.

Fig. S2 DFT-calculated structures and relative energies of (a) NbB₄⁻, (b) NbB₄CH₂⁻ and (c) NbB₄C₂H₄⁻. The zero-point vibration corrected energies (ΔH_{0K} in eV) of each structure are given. The superscripts indicate the spin multiplicities. The high-level CCSD(T) calculated energies for **IA1** and **P1** are given in square brackets.

Fig. S3 DFT-calculated potential energy surfaces for the reaction of NbB₄⁻ with CH₄. The zeropoint vibration-corrected energies (ΔH_{0K} in eV) of the reaction intermediates, transition states, and products with respect to the separated reactants are given. The superscripts indicate the spin multiplicities.

Fig. S4 DFT-calculated potential energy surface for the reaction of NbB₄CH₂⁻ with CH₄. The zeropoint vibration-corrected energies (ΔH_{0K} in eV) of the reaction intermediates, transition states, and products with respect to the separated reactants are given. The superscripts indicate the spin multiplicities.

Fig. S5 DFT-calculated pathways for C–C coupling process.

	1 IA1 + CH ₄	${}^{3}\mathbf{P1} + \mathrm{H}_{2}$	3 P1 + CH ₄	${}^{1}\mathbf{P2} + H_{2}$
Nb	0.53	0.38	0.38	0.99
B1	-0.43	0.22	0.22	0.22
B2	-0.34	-0.04	-0.04	-0.19
B3	-0.34	-0.27	-0.27	-0.20
B4	-0.43	-0.40	-0.40	-0.02
C1	-0.79	-0.74	-0.74	-0.68
C2	_	_	-0.79	-0.52
H1	0.20	0.00	_	_
H2	0.20	0.00	_	_
H3	0.20	-0.08	-0.08	-0.01
H4	0.20	-0.06	-0.06	-0.08
H5	_	_	0.20	0.00
H6	—	_	0.20	-0.01
H7	_	_	0.20	-0.49
H8	_	_	0.20	0.00

Table S2. Natural charges on all atoms of reactants and products in the reactions of NbB_4^- and $NbB_4CH_2^-$ with CH_4 .

Fig. S6 Natural charges of the Nb and H atoms of the reactions (a) $NbB_4^- + CH_4$ and (b) $NbB_4CH_2^- + CH_4$ along with the reaction coordinates.

Fig. S7 Schematic molecular orbital diagrams for ¹**TS1**. Only representative orbitals are shown for the transition state.

In the process of activating the first methane, the significant stabilizing interactions of the ¹**TS1** reflect the reaction barriers (25.1 kJ mol⁻¹) well below the corresponding deformation energies (117.3 kJ mol⁻¹). The detailed molecular orbitals are shown in **Figure S7**. These two assignments point to the PCET process.^{10,11}

References

- 1 B. Simard, P. Presunka et al., J. Chem. Phys., 1997, 107, 307–318.
- 2 G. Verhaegen, F. E. Stafford, J. Drowart, J. Chem. Phys., 1964, 40, 1622–1628.
- C. H. Jr. Bauschlicher, S. R. Langhoff, P. R. Taylor, J. Chem. Phys., 1990, 93, 502–506.
- 4 B. Ruscic, D. Feller, K. A. Peterson, *Theor. Chem. Acc.*, 2014, **133**, 1415.
- 5 M. R. Sievers, Y.-M. Chen et al., Int. J. Mass Spectrom., 2000, 195/196, 149–170.
- 6 Y.-P. Zhang, C.-H. Cheng et al., *Phys. Rev. Lett.*, 2004, **92**, 203003/1–203003/4.
- 7 T. M. Bernhardt, Int. J. Mass Spectrom., 2005, 243, 1–29.
- 8 J. I. Steinfeld, J. S. Francisco, W. L. Hase, *Chemical Kinetics and Dynamics*. Prentice Hall: Upper Saddle River, New Jersey, 1999.
- 9 T. Beyer, D. F. Swinehart, Algorithm 448: Number of Multiply-Restricted Partitions. 1973; Vol. 16.
- 10 J.-L. Li, S.-D. Zhou, J. Zhang, M. Schlangen, D. Usharani, S. Shaik, H. Schwarz, J. *Am. Chem. Soc.*, 2016, **138**, 11368-11377.
- 11 S.-D. Zhou, L. Yue, M. Schlangen, H. Schwarz, *Angew. Chem. Int. Ed.*, 2017, 56, 14297-14300.