Supporting Information

Consecutive Methane Activation Mediated by Single Metal

Boride Cluster Anions NbB4 ${ }_{4}^{-}$

Ying Li, ${ }^{a}$ Ming Wang, ${ }^{a}$ Yong-Qi Ding, ${ }^{a}$ Chong-Yang Zhao,*a Jia-Bi Ma*a
${ }^{a}$ Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
\section*{Corresponding Author}
*Chong-Yang Zhao, Email: zhaocy1987@iccas.ac.cn
*Jia-Bi Ma, Email: majiabi@bit.edu.cn

Contents

1. Additional time-of-flight (TOF) mass spectra results. (pages S2)
2. Additional density functional theory results. (pages S3-S10)
3. References. (pages S11)

$$
\text { (a) } \begin{aligned}
& 1.0 \\
& \hline
\end{aligned}
$$

(b)

Fig. S1 Variations of relative ion intensities of the reactant and product anions in the reactions of (a) $\mathrm{NbB}_{4}{ }^{-}$and CH_{4} with respect to the CH_{4} pressures for 6.6 ms and (b) $\mathrm{NbB}_{4}{ }^{-}$and CD_{4} with respect to the CD_{4} pressures for 8.6 ms . The solid lines are fitted to the experimental data points by using the equations derived with the approximation of the pseudo-first-order reaction mechanism.

Table S1. DFT-calculated and experimental bond dissociation energies. The values are in unit of eV .

${ }^{1}$: A.D. $=\frac{\sum\left(x_{i}-x_{\text {exp }}\right)}{n}, x_{\mathrm{i}}$ is the DFT calculated bond dissociation energy and $x_{\exp }$ is the experimental value.

The Rice-Ramsperger-Kassel-Marcus theory (RRKM) ${ }^{7}$ was used to calculate the rate constant of traversing transition states from intermediates. For these calculations, the energy (E) of the reaction intermediate and the energy barrier $\left(E^{\ddagger}\right)$ for each step were needed. The reaction intermediate possesses the vibrational energies ($E_{\text {vib }}$) of ${ }^{1} \mathrm{NbB}_{4}{ }^{-},{ }^{3} \mathrm{NbB}_{4} \mathrm{CH}_{2}{ }^{-}$and CH_{4}, the center of mass kinetic energy $\left(E_{\mathrm{k}}\right)$, and the binding energy $\left(E_{\mathrm{b}}\right)$ which is the energy difference between the separated reactants $\left({ }^{1} \mathrm{NbB}_{4}{ }^{-} / \mathrm{CH}_{4}\right.$ and ${ }^{3} \mathrm{NbB}_{4} \mathrm{CH}_{2}{ }^{-} / \mathrm{CH}_{4}$) and the reaction complexes. The values of E_{vib} and E_{b} were taken from the DFT calculations and $E_{\mathrm{k}}=\mu \nu^{2} / 2$, in which μ is the reduced mass (14.3 and 14.5 , respectively), and v is the velocity ($\approx 733 \mathrm{~m} / \mathrm{s}$ and $672 \mathrm{~m} / \mathrm{s}$, respectively). The densities and the numbers of states required for RRKM calculations were obtained by the direct count method ${ }^{8,9}$ with the DFT calculated vibrational frequencies under the approximation of harmonic vibrations. According to the DFT calculated energies, the rates of internal conversion ($k_{\text {conversion }}$) for processes of ${ }^{1} \mathbf{I} 9 \rightarrow{ }^{1} \mathbf{T S} 9$ in Reaction 1 and ${ }^{1} \mathbf{I} 19 \rightarrow{ }^{1} \mathbf{T S} 19$ in Reaction 2 are $4.5 \times 10^{6} \mathrm{~s}^{-1}$ and $8.1 \times 10^{6} \mathrm{~s}^{-1}$, respectively.

${ }^{1}$ IA1, $\mathrm{C}_{2 v}, 0.00$ [0.00]
${ }^{3}$ IA1, $C_{2 v}, 0.28$ [0.40]
${ }^{5}$ IA1, $C_{1}, 1.15$

${ }^{5} \mathrm{IA} 4, C_{s}, 0.57$
${ }^{5}$ IA5, $C_{1}, 0.56$
${ }^{3}$ IA5, $C_{s}, 1.17$
(b) $[0.00]$

${ }^{1}$ IA9, $C_{s}, 0.49$

${ }^{1} \mathrm{IA} 10, C_{1}, 0.60$

${ }^{1}$ IA7, $C_{1}, 0.43 \quad{ }^{1}$ IA8, $C_{1}, 0.47$
${ }^{3}$ IA7, C $1,0.85$

${ }^{1} \mathrm{IA} 12, \mathrm{C}_{1}, 0.68{ }^{1} \mathrm{IA} 13, \mathrm{C}_{1}, 0.73$

${ }^{1} \mathrm{I} \mathrm{A} 21, \mathrm{C}_{1}, 0.97{ }^{1} \mathrm{I} \mathrm{A} 22, \mathrm{C}_{1}, 0.98$

${ }^{1}$ IA24, $\stackrel{C}{C}_{1}, 0.19{ }^{1}$ IA $25, C_{1}, 0.77$

Fig. S2 DFT-calculated structures and relative energies of (a) NbB_{4}^{-}, (b) $\mathrm{NbB}_{4} \mathrm{CH}_{2}{ }^{-}$and (c) $\mathrm{NbB}_{4} \mathrm{C}_{2} \mathrm{H}_{4}{ }^{-}$. The zero-point vibration corrected energies ($\Delta H_{0 \mathrm{~K}}$ in eV) of each structure are given. The superscripts indicate the spin multiplicities. The high-level $\operatorname{CCSD}(\mathrm{T})$ calculated energies for IA1 and P1 are given in square brackets.

$\bigcirc \mathrm{Nb} \bigcirc \mathrm{B} \bigcirc \mathrm{C} \bigcirc \mathrm{H}$
$\underbrace{3}_{12}$

Fig. S3 DFT-calculated potential energy surfaces for the reaction of NbB_{4}^{-}with CH_{4}. The zeropoint vibration-corrected energies $\left(\Delta H_{0 \mathrm{~K}}\right.$ in eV$)$ of the reaction intermediates, transition states, and products with respect to the separated reactants are given. The superscripts indicate the spin multiplicities.

${ }^{3}$ TS19

${ }^{1}$ TS15-1.71
${ }^{1}$ I15-1.68
${ }^{1}$ TS14-0.76
${ }^{1}$ I14-1.70

Cole

${ }^{1}$ I20-1.66
TS19-1.20

Fig. S4 DFT-calculated potential energy surface for the reaction of $\mathrm{NbB}_{4} \mathrm{CH}_{2}{ }^{-}$with CH_{4}. The zeropoint vibration-corrected energies $\left(\Delta H_{0 \mathrm{~K}}\right.$ in eV$)$ of the reaction intermediates, transition states, and products with respect to the separated reactants are given. The superscripts indicate the spin multiplicities.

Fig. S5 DFT-calculated pathways for $\mathrm{C}-\mathrm{C}$ coupling process.

Table S2. Natural charges on all atoms of reactants and products in the reactions of $\mathrm{NbB}_{4}{ }^{-}$and $\mathrm{NbB}_{4} \mathrm{CH}_{2}{ }^{-}$with CH_{4}.

	${ }^{1} \mathbf{I A} \mathbf{I}+\mathrm{CH}_{4}$	${ }^{3} \mathbf{P} \mathbf{1}+\mathrm{H}_{2}$	${ }^{3} \mathbf{P} \mathbf{1}+\mathrm{CH}_{4}$	${ }^{1} \mathbf{P} 2+\mathrm{H}_{2}$
Nb	0.53	0.38	0.38	0.99
B 1	-0.43	0.22	0.22	0.22
B 2	-0.34	-0.04	-0.04	-0.19
B3	-0.34	-0.27	-0.27	-0.20
B4	-0.43	-0.40	-0.40	-0.02
C1	-0.79	-0.74	-0.74	-0.68
C2	-	-	-0.79	-0.52
H1	0.20	0.00	-	-
H2	0.20	0.00	-	-
H3	0.20	-0.08	-0.08	-0.01
H4	0.20	-0.06	-0.06	-0.08
H5	-	-	0.20	0.00
H6	-	-	0.20	-0.01
H7	-	-	0.20	-0.49
H8	-	-	0.20	0.00

Fig. S6 Natural charges of the Nb and H atoms of the reactions (a) $\mathrm{NbB}_{4}^{-}+\mathrm{CH}_{4}$ and (b) $\mathrm{NbB}_{4} \mathrm{CH}_{2}-$
$+\mathrm{CH}_{4}$ along with the reaction coordinates.

Fig. S7 Schematic molecular orbital diagrams for ${ }^{1}$ TS1. Only representative orbitals are shown for the transition state.

In the process of activating the first methane, the significant stabilizing interactions of the ${ }^{1} \mathbf{T S} 1$ reflect the reaction barriers $\left(25.1 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ well below the corresponding deformation energies ($117.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$). The detailed molecular orbitals are shown in Figure S7. These two assignments point to the PCET process. ${ }^{10,11}$

References

1 B. Simard, P. Presunka et al., J. Chem. Phys., 1997, 107, 307-318.
2 G. Verhaegen, F. E. Stafford, J. Drowart, J. Chem. Phys.,1964, 40, 1622-1628.
3 C. H. Jr. Bauschlicher, S. R. Langhoff, P. R. Taylor, J. Chem. Phys., 1990, 93, 502506.

4 B. Ruscic, D. Feller, K. A. Peterson, Theor. Chem. Acc., 2014, 133, 1415.
5 M. R. Sievers, Y.-M. Chen et al., Int. J. Mass Spectrom., 2000, 195/196, 149-170.
6 Y.-P. Zhang, C.-H. Cheng et al., Phys. Rev. Lett., 2004, 92, 203003/1-203003/4.
7 T. M. Bernhardt, Int. J. Mass Spectrom., 2005, 243, 1-29.
8 J. I. Steinfeld, J. S. Francisco, W. L. Hase, Chemical Kinetics and Dynamics. Prentice Hall: Upper Saddle River, New Jersey, 1999.

9 T. Beyer, D. F. Swinehart, Algorithm 448: Number of Multiply-Restricted Partitions. 1973; Vol. 16.

10 J.-L. Li, S.-D. Zhou, J. Zhang, M. Schlangen, D. Usharani, S. Shaik, H. Schwarz, J. Am. Chem. Soc., 2016, 138, 11368-11377.
11 S.-D. Zhou, L. Yue, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed., 2017, 56, 14297-14300.

