Supplementary Material

Table S1 The FAC, diffusion coefficients of VOCs, and $g(r)$ for the intermolecular interactions
occurred between C atom of VOCs and S atom of sulfate in the aqueous dual VOCs-sulfate
systems
Table S2 The FAC, diffusion coefficients of VOCs, and g(r) for the intermolecular interactions occurred between C atom of VOCs and S atom of sulfate in the dry dual VOCs-sulfate systems.
Table S3 The regression statistics for the dry and aqueous dual VOCs-sulfate models
Table S4 The FAC, distances (r) and intensities $(g(r))$ for the $S(SO_4^{2-})-O(H_3O^+)$ and $S(SO_4^{2-})-O(H_3O^+)$
O(H2O) interactions in the aqueous mono VOC-sulfate systems
Table S5 The FAC, distances (r) and intensities $(g(r))$ for the C(VOC)-O(H ₃ O ⁺) interactions inthe aqueous mono VOC-sulfate systems
Table S6 The FAC, distances (r) and intensities $(g(r))$ for the C(VOC)-O(H ₂ O) interactions in
the aqueous mono VOC-sulfate systems
Table S7 The regression statistics for the dry and aqueous mono VOC-sulfate models.
Table S8 The FAC, diffusion coefficients (D) and $g(r)$ for the intermolecular interactions
occurred between C atom of VOCs and S atom of sulfate in the aqueous mono VOC-sulfate
systems10

Figure S1 The snapshots of the dry mono VOC-sulfate models after the production MD simulation runs and the enlarged views of the snapshots on the surface of sulfate......11 Figure S2 The RDFs for the intermolecular interactions between C atoms of VOCs and S atoms Figure S3 The RDFs for the intermolecular interactions between H atom of OH group of Figure S4 The snapshots of the aqueous mono VOC-sulfate models after production MD simulation runs and the enlarged views of the snapshots on the surface of sulfate......14 Figure S5 The g(r) of VOCs for the $S(SO_4^{2-})-O(H_3O^+)$ and $S(SO_4^{2-})-O(H_2O)$ interactions...15 Figure S6 The RDFs for the intermolecular interactions between O atom of phenol and S atoms Figure S7 The RDFs for the intermolecular interactions between H, C, Cl atom of dichloromethane and S atoms of sulfate in the dry and aqueous mono VOC-sulfate systems. Figure S8 The snapshots of the aqueous dual VOCs-sulfate models after production MD Figure S9 The Tg of each system in the dry and aqueous dual VOCs-sulfate systems as a Figure S10 The RDFs for the C(VOC)-S(SO₄²⁻) interactions in the dry mono VOC-sulfate

Figure S11 The RDFs for the C(VOC)-S(SO ₄ ²⁻) interactions in the aqueous mono VOC-sulfate
systems
Figure S12 The RDFs for the $C(VOC)$ - $S(SO_4^{2-})$ interactions in the dry dual VOCs-sulfate
systems20
Figure S13 The RDFs for the $C(VOC)$ - $S(SO_4^{2-})$ interactions in the aqueous dual VOCs-sulfate
systems20
Figure S14 The RDFs for the $S(SO_4^{2-})$ - $O(H_3O^+)$ interactions in the aqueous mono VOC-sulfate
systems
Figure S15 The RDFs for the $S(SO_4^{2-})$ - $O(H_2O)$ interactions in the aqueous mono VOC-sulfate
systems
Figure S16 The RDFs for the $C(VOC)$ - $O(H_2O)$ interactions in the aqueous mono VOC-sulfate
systems
Figure S17 The RDFs for the $C(VOC)$ - $O(H_3O^+)$ interactions in the aqueous mono VOC-sulfate
systems

Models	VOCs	FAC	g(r)		0												
		(%)	C1 (or specific C on Aromatics)		C2		C3	C4	C5	C6	C7	C'(sub C)	Tg	<i>D</i> (10 ⁻⁴ cm ² /s)	total FAC	Tg (system)	
ethylbenzene & 1-	ethylbenzene 1-	5.4	0.74	0.98	1.17								1.17	4.06	1.03	10.40	7.58
methylcyclopent ene	methylcyclop entene	5	0.33	0.42		0.20	0.41	0.56	0.50	0.32			0.78	3.52	1.55		
toluene & p-	toluene	5.4	0.49	0.72	0.98								2.34	4.53	0.75	7.00	7.41
xylene	p-xylene	1.6	1.44	3.08	3.76								3.24	2.88	0.57		
p-xylene &	p-xylene	1.6	0.96	2.16	3.08								2.22	2.11	0.49	7.00	5.34
ethylbenzene	ethylbenzene	5.4	0.52	0.74	0.98								0.99	3.23	0.51		
ethane &	ethane	0	0.42											0.42	2.55	5.40	5.31
toluene	toluene	5.4	0.86	1.02	1.24								1.77	4.89	0.90		
benzene &	benzene	2	3.60	6.42	6.90	-		-						2.82	1.09	4.70	6.34
methyl cyclohexane	methyl cyclohexane	2.7	0.28			1.48	0.84	0.48					0.72	3.52	1.69		
p-xylene &	p-xylene	1.6	1.36	3.20	4.00								3.48	3.01	0.56	1.77	4.15
methyl cyclopentane	methyl cyclopentane	0.17						0.60					0.54	1.14	1.75		
ethane & methyl	ethane	0	0.72											0.72	2.65	0.17	2.29
cyclopentane	methyl cyclopentane	0.17						0.88					0.69	1.57	1.39		

Table S1 The FAC, diffusion coefficients of VOCs, and g(r) for the intermolecular interactions occurred between C atom of VOCs and S atom of sulfate in the aqueous dual VOCs-sulfate systems. The g(r) values were obtained from Figure S13.

^aC1 represents number 1 carbon of non-aromatics according to its locant, or the aromatic carbon closest to sulfate. ^bC'(subC) represents carbon on the methyl group of VOCs. The g(r) values presented in the table were calculated from the original values in **Figure S13** using the rules as follows. For aromatics with symmetry, the g(r) values of its specific C were calculated by multiplying the original valid g(r) by the symmetry number, because there are more than one specific C for these VOCs. And g(r) values of the alkyl carbons were estimated by multiplying the original valid g(r) by H number on each -CH_n group. Finally, the Tg values were calculated using the rules as described in the paper.

,	8()			8.													
Models	VOCs	FAC (%)	g(r) C1 (c	or specif	fic C on	C2		C3	C4	С5	C6	C7	C'(su	Tg	$D(10^{-4})$	total	Tg
			Arom	atics)									UC)		cm /s)	FAC	(system)
ethylbenzene	ethylbenzene	5.4	0.89	0.96	1.14								1.50	4.49	0.98	10.40	8.12
& 1-	1-																
methylcyclope	methylcyclopent	5	0.36	0.42		0.22	0.41	0.64	0.38	0.30			0.90	3.63	1.79		
ntene	ene																
toluene & p-	toluene	5.4	0.62	0.83	1.04								1.44	3.93	0.64	7.00	6.21
xylene	p-xylene	1.6	1.16	2.24	3.20								2.52	2.28	0.46		
p-xylene &	p-xylene	1.6	1.36	2.56	3.28	-		-			-		3.00	2.55	0.42	7.00	5.76
ethylbenzene	ethylbenzene	5.4	0.60	0.64	0.92								1.05	3.21	0.55		
ethane &	ethane	0	0.66											0.66	3.52	5.40	5.83
toluene	toluene	5.4	0.93	1.03	1.26								1.95	5.17	0.52		
benzene &	benzene	2	4.26	6.60	6.60						-			2.91	1.46	4.70	6.12
methyl cyclohexane	methyl cyclohexane	2.7	0.28			0.88		0.92	0.50				0.63	3.21	3.03		
p-xylene &	p-xylene	1.6	2.16	3.96	4.64								4.74	3.88	0.33	1.77	4.21
methyl cyclopentane	methyl cyclopentane	0.17											0.33	0.33	1.32		
ethane &	ethane	0	0.60											0.60	2.39	0.17	1.56
methyl cyclopentane	methyl cyclopentane	0.17											0.96	0.96	1.55		

Table S2 The FAC, diffusion coefficients of VOCs, and g(r) for the intermolecular interactions occurred between C atom of VOCs and S atom of sulfate in the dry dual VOCs-sulfate systems. The g(r) values were obtained from **Figure S12**.

^aC1 represents number 1 carbon of non-aromatics according to its locant, or the aromatic carbon closest to sulfate. ^bC'(subC) represents carbon on the methyl group of VOCs. The g(r) values presented in the table were calculated from the original values in **Figure S12** using the rules as follows. For aromatics with symmetry, the g(r) values of its specific C were calculated by multiplying the original valid g(r) by the symmetry number, because there are more than one specific C for these VOCs. And g(r) values of the alkyl carbons were estimated by multiplying the original valid g(r) by H number on each -CH_n group. Finally, the Tg values were calculated using the rules as described in the paper.

		dry dual VOCs- sulfate model	R Square Standard Error	0.96 1.28	aqueous dual VOCs- sulfate model	R Square Standard Error	0.95 1.41	
			FAC = 1.15	Tg - 0.48 <i>D</i>	FAC = 1.13 Tg - 0.60 D			
	FAC (total) (%)	Predicted 5.4	Residuals	Standard Residuals	Predicted 5.4	Residuals	Standard Residuals	
toluene & p-xylene	7	6.64	0.36	0.35	7.60	-0.60	-0.52	
p-xylene & ethylbenzene	7	6.18	0.82	0.78	5.45	1.55	1.35	
ethane & toluene	5.4	4.79	0.61	0.59	3.94	1.46	1.27	
benzene & methyl cyclohexane	4.7	4.91	-0.21	-0.20	5.52	-0.82	-0.71	
p-xylene & methyl cyclopentane	1.77	4.06	-2.29	-2.20	3.31	-1.54	-1.34	
ethane & methyl cyclopentane	0.17	-0.10	0.27	0.26	0.16	0.01	0.01	

 Table S3 The regression statistics for the dry and aqueous dual VOCs-sulfate models.

VOCs	FAC (%)	$r(S(SO_4^{2-})-O(H_3O^+))$	r (S(SO ₄ ²⁻)-O(H ₂ O))	$g(r) (S(SO_4^{2-})-O(H_3O^+))$	$g(r) (S(SO_4^{2-})-O(H_2O))$
toluene	5.4	3.41	3.51	19.1	7.28
ethylbenzene	5.4	3.41	3.37	18.85	4.48
o-xylene	5	3.41	3.49	18.42	9.52
p-xylene	1.6	3.37	3.43	18.84	10.43
benzene	2	3.41	3.41	18.34	9.95
phenol	5	3.39	3.39	18.73	6.05
1-methylcyclopentene	5	3.39	3.39	18.39	10.26
methyl cyclopentane	0.17	3.41	3.43	18.77	8.7
methyl cyclohexane	2.7	3.43	3.45	18.27	9.06
1-heptene	2	3.43	3.53	18.68	9.89
n-heptane	0.06	3.39	3.41	18.64	9.53
ethane	0	3.37	3.39	18.16	8.74
acetylene	0	3.41	3.47	17.73	8.93
dichloromethane		3.39	3.43	18.53	11.4

Table S4 The FAC, distances (r) and intensities (g(r)) for the $S(SO_4^{2-})-O(H_3O^+)$ and $S(SO_4^{2-})-O(H_2O)$ interactions in the aqueous mono VOC-sulfate systems. The g(r) values were obtained from **Figure S14** and **Figure S15**.

i iguit 517.																			
VOCs	FAC	r									g(r)								
	(%)	C1	C2	C3	C4	C5	C6	C7	^a C'(s ubC)	₿С"	C1	C2	C3	C4	C5	C6	C7	^a C'(s ubC)	^b C"
toluene	5.4	4.77	3.83	3.91	3.73				3.83		0.79	0.74	0.92	0.98				0.83	
ethylbenzene	5.4	4.79	4.09	3.71	3.73				3.95	4.31	0.70	0.70	0.94	1.05				0.64	0.71
o-xylene	5	3.71	3.83	3.79					3.89		0.54	0.80	1.03					0.76	
p-xylene	1.6	4.71	3.69						3.77		0.79	0.72						1.04	
benzene	2	3.77									0.94								
phenol	5	3.77	3.87	4.17	4.45						1.89	1.34	0.76	0.59					
1-methylcyclopentene	5	4.87	3.91	3.93	4.21	3.91			3.87		0.50	0.41	0.50	0.47	0.40			0.56	
methyl cyclopentane	0.17	4.93	4.03	4.61					3.79		0.56	0.40	0.46					0.46	
methyl cyclohexane	2.7	5.05	4.07	4.47	4.63				3.85		0.47	0.33	0.37	0.41				0.42	
1-heptene	2	3.81	4.11	4.35	4.83	4.99	4.75	4.19			0.69	0.58	0.56	0.51	0.47	0.48	0.51		
n-heptane	0.06	3.87	4.73	5.01	5.13						0.49	0.46	0.42	0.43					
ethane	0	3.77									0.35								
acetylene	0	3.51									0.87								
dichloromethane		4.23									1.27								

Table S5 The FAC, distances (r) and intensities (g(r)) for the C(VOC)-O(H₃O⁺) interactions in the aqueous mono VOC-sulfate systems. The g(r) values were obtained from Figure S17.

^aC'(subC) represents carbon on the methyl group of VOCs, ^bC" represents the methylene carbon of ethylbenzene.

VOCs	FAC	r									g(r)								
	(%)	C1	C2	C3	C4	C5	C6	C7	^a C'(s ubC)	╘С"	C1	C2	C3	C4	C5	C6	C7	^a C'(s ubC)	^b C"
toluene	5.4	4.99	3.97	3.91	3.81				4.21		9.98	7.14	10.28	12.30				8.76	
ethylbenzene	5.4	5.51	3.85	3.97	3.63				4.11	4.63	5.14	3.55	4.83	5.63				4.16	4.55
o-xylene	5	5.13	3.89	3.75					3.99		10.19	10.60	14.61					9.10	
p-xylene	1.6	4.91	4.17						4.19		9.30	6.05						8.74	
benzene	2	4.19									7.59								
phenol	5	1.37	2.41	3.67	4.17						2598. 87	498.4 4	230.3 9	171.3 8					
1-methylcyclopentene	5	4.81	3.69	4.27	5.13	5.97			3.97		5.31	4.23	4.63	4.52	4.63			5.60	
methyl cyclopentane	0.17	5.03	5.91	5.73					4.27		2.27	1.98	1.99					2.10	
methyl cyclohexane	2.7	5.01	6.13	4.55	4.73				3.69		6.64	5.52	4.96	5.72				5.41	
1-heptene	2	3.83	4.53	5.31	5.77	5.89	4.93	4.15			8.26	6.86	6.10	5.99	5.52	6.11	6.36		
n-heptane	0.06	4.09	4.95	5.19	5.81						3.96	4.06	4.05	4.04					
ethane	0	4.47									1.21								
acetylene	0	3.87									4.23								
dichloromethane		3.51									13.43								

Table S6 The FAC, distances (r) and intensities (g(r)) for the C(VOC)-O(H₂O) interactions in the aqueous mono VOC-sulfate systems. The g(r) values were obtained from Figure S16.

^aC'(subC) represents carbon on the methyl group of VOCs, ^bC" represents the methylene carbon of ethylbenzene.

		dry mono	R Square	0.92	aqueous mono	R Square	0.94			
		VOC-sulfate model	Standard Error	1.00	VOC-sulfate model	Standard Error	0.85			
			FAC = 0.94 T	² g - 0.50 <i>D</i>		FAC = 1.00 Tg - 0.62 D				
	FAC (%)	Predicted 5.4	Residuals	Standard Residuals	Predicted 5.4	Residuals	Standard Residuals			
ethylbenzene	5.4	3.94	1.46	1.60	4.25	1.15	1.47			
o-xylene	5	4.03	0.97	1.06	4.17	0.83	1.07			
p-xylene	1.6	3.03	-1.43	-1.57	3.20	-1.60	-2.06			
benzene	2	2.60	-0.60	-0.66	2.15	-0.15	-0.19			
phenol	5	4.08	0.92	1.01	5.30	-0.30	-0.39			
1-methylcyclopentene	5	4.93	0.07	0.08	4.13	0.87	1.12			
methyl cyclopentane	0.17	0.41	-0.24	-0.26	-0.14	0.31	0.40			
methyl cyclohexane	2.7	3.13	-0.43	-0.47	3.19	-0.49	-0.63			
1-heptene	2	3.49	-1.49	-1.63	2.88	-0.88	-1.14			
n-heptane	0.06	0.26	-0.20	-0.22	0.80	-0.74	-0.95			
ethane	0	-0.94	0.94	1.03	-0.20	0.20	0.26			
acetylene	0	0.52	-0.52	-0.57	-0.34	0.34	0.43			

 Table S7 The regression statistics for the dry and aqueous mono VOC-sulfate models.

VOCs	FAC (%)	$D (10^{-4} \text{ cm}^2/\text{s})$	g(r)											
			^a C1 (or specific C on Aromatics)			C2		C3	C4	C5	C6	C7	^b C'(subC)	Tg
toluene	5.4	1.40	0.81	1.02	1.15								1.56	4.54
ethylbenzene	5.4	0.64	1.03	1.00	1.08								1.53	4.64
o-xylene	5	0.50	1.64	1.98	2.38								2.94	4.47
p-xylene	1.6	0.66	1.88	4.00	4.40								4.14	3.61
benzene	2	1.14	3.24	6.78	7.08									2.85
phenol	5	0.40	2.85	1.18	1.51									5.54
1-methylcyclopentene	5	1.52	0.47	0.69		0.38	0.58	0.74	0.66	0.46			1.08	5.06
methyl cyclopentane	0.17	1.64											0.87	0.87
methyl cyclohexane	2.7	1.16	0.39			0.88		1.20	0.62				0.81	3.90
1-heptene	2	1.15	0.56	0.69		0.59	0.67					1.08		3.59
n-heptane	0.06	2.03	2.04											2.04
ethane	0	2.77	1.50											1.50
acetylene	0	2.64	0.64	0.65										1.29
dichloromethane		0.17	1.18	1.22	1.14									3.54

Table S8 The FAC, diffusion coefficients (D) and g(r) for the intermolecular interactions occurred between C atom of VOCs and S atom of sulfate in the aqueous mono VOC-sulfate systems. The g(r) values were obtained from **Figure S11**.

^aC1 represents number 1 carbon of non-aromatics according to its locant, or the aromatic carbon closest to sulfate. ^bC'(subC) represents carbon on the methyl group of VOCs.

The g(r) values presented in the table were calculated from the original values in **Figure S11** using the rules as follows. For aromatics with symmetry, the g(r) values of its specific C were calculated by multiplying the original valid g(r) by the symmetry number, because there are more than one specific C for these VOCs. And g(r) values of the alkyl carbons were estimated by multiplying the original valid g(r) by H number on each -CH_n group. Finally, the Tg values were calculated using the rules as described in the paper.

Figure S1 The snapshots of the dry mono VOC-sulfate models after the production MD simulation runs and the enlarged views of the snapshots on the surface of sulfate, in which, the pictures to the left are the snapshots of the models and the corresponding enlarged views are next to them. In the snapshots, the left part is air comprising of O_2 , N_2 and VOC molecules, and the right yellow part is sulfate and H_3O^+ .

Figure S2 The RDFs for the intermolecular interactions between C atoms of VOCs and S atoms of sulfate in the dry mono VOC-sulfate systems. o-C, m-C, p-C, subC, meC represent the ortho, meta, para, substituted and methyl carbon of VOCs, respectively. H("numeric"-C) represents the carbon atom at the corresponding locant.

Figure S3 The RDFs for the intermolecular interactions between H atom of OH group of phenol and S atoms of sulfate in the dry and aqueous mono VOC-sulfate systems.

Figure S4 The snapshots of the aqueous mono VOC-sulfate models after production MD simulation runs and the enlarged views of the snapshots on the surface of sulfate, in which, the pictures to the left are the snapshots of the models and the corresponding enlarged views are next to them. In the snapshots, the left part is air comprising of O_2 , N_2 and VOC molecules, and the right yellow part is sulfate, H_2O and H_3O^+ . From the enlarged views, the big red-white spheres represent H_2O molecules, while the smaller red-white spheres represent H_3O^+ molecules.

Figure S6 The RDFs for the intermolecular interactions between O atom of phenol and S atoms of sulfate in the dry and aqueous mono VOC-sulfate systems.

Figure S7 The RDFs for the intermolecular interactions between H, C, Cl atom of dichloromethane and S atoms of sulfate in the dry and aqueous mono VOC-sulfate systems.

Figure S8 The snapshots of the aqueous dual VOCs-sulfate models after production MD simulation runs and the enlarged views of the snapshots, in which, the pictures to the left are the snapshots of the atmospheric models and the corresponding enlarged views are next to them. In the snapshots, the left part is air comprising of O_2 , N_2 and VOC molecules, and the right yellow part is sulfate, H_2O and H_3O^+ .

Figure S9 The Tg of each system in the dry and aqueous dual VOCs-sulfate systems as a function of FAC were plotted.

Figure S10 The RDFs for the C(VOC)-S(SO₄²⁻) interactions in the dry mono VOC-sulfate systems.

Figure S11 The RDFs for the C(VOC)-S(SO4²⁻) interactions in the aqueous mono VOC-sulfate systems.

Figure S12 The RDFs for the C(VOC)-S(SO₄²⁻) interactions in the dry dual VOCs-sulfate systems.

Figure S13 The RDFs for the C(VOC)-S(SO $_4^{2-}$) interactions in the aqueous dual VOCs-sulfate systems.

Figure S14 The RDFs for the $S(SO_4^{2-})$ - $O(H_3O^+)$ interactions in the aqueous mono VOC-sulfate systems.

Figure S15 The RDFs for the $S(SO_4^{2-})$ - $O(H_2O)$ interactions in the aqueous mono VOC-sulfate systems.

Figure S16 The RDFs for the C(VOC)-O(H₂O) interactions in the aqueous mono VOC-sulfate systems.

Figure S17 The RDFs for the C(VOC)-O(H₃O⁺) interactions in the aqueous mono VOC-sulfate systems.