Evaluation of Static Differential Capacitance at the $\left[\mathrm{C}_{4} \mathrm{mim}^{+}\right]\left[\mathrm{TFSA}^{-}\right] /$Electrode Interface Using Molecular Dynamics Simulation Combined with Electrochemical Surface Plasmon Resonance Measurements

Shiwei Zhang ${ }^{1}$, Naoya Nishi ${ }^{1, *}$, Seiji Katakura ${ }^{2}$, Tetsuo Sakka ${ }^{1}$

*E-mail: nishi.naoya.7e@kyoto-u.ac.jp
${ }^{1}$ Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
${ }^{2}$ Department of Electrical Engineering, Graduate School of Engineering, Nagoya
University, Nagoya 464-8603, Japan

Figure S1. Atomic number density distributions profiles of $\mathrm{N}_{\mathrm{B}}, \mathrm{C}_{\mathrm{B} 4}, \mathrm{~N}_{\mathrm{BT}}$ and F_{1} atoms (see Fig. 1 for the atom name definition) produced from the MD trajectories as examples.

Figure S2. Potential distribution calculated by the one-dimensional Poisson equation.

Figure S3. Orientation of imidazolium ring in the first and semi layers at $q_{\mathrm{M}}=-61.1 \mu \mathrm{C} / \mathrm{cm}^{2}$. The probability density functions for the vector between the two N atoms (left) and the resultant vector of the two $\mathrm{C}_{\mathrm{RI}}-\mathrm{C}_{\mathrm{w}}$ (right) are investigated. The two vectors both exhibit high peaks besides those at 90°, which means that some of the imidazolium rings are "standing up" if we include the semi-layer into the first ionic layer.

Figure S4. Dihedral angle of $\mathrm{C}_{\mathrm{BT}}-\mathrm{S}_{\mathrm{BT}}-\mathrm{S}_{\mathrm{BT}}-\mathrm{C}_{\mathrm{BT}}$ in the anion near the positively charged electrode. Three peaks can be seen in all the potentials around $0^{\circ}, 120^{\circ}$ and 180°. The peak around 0° is corresponding to the cis conformation, while those around 120° and 180° are to the trans conformation. At 2 V , the ratio of cis to trans conformation is about 2 . As the potential goes positive, all the anions are tend to be in cis conformation.

Figure S5. Ionic number density distributions in all the other charging conditions other than $\left|q_{\mathrm{M}}\right|=0$, 18.3, 36.6, and $55.0 \mu \mathrm{C} / \mathrm{cm}^{2}$, which are shown in Fig. 7.

