Supplementary Materials for

Theoretical Insights on Tunable Optoelectronics and Charge Mobilities in Cyano-Perylenediimides: Interplays between -CN Numbers and Positions

Raka Ahmed and Arun K Manna*

Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, A.P 517506

*Corresponding Author E-mail: arun@iittp.ac.in

Table S1: Molecular dipole moments (μ , in Debye), HOMO (H) and LUMO (L) energies along with Mülliken electronegativity $\chi = -\frac{1}{2}(E_H + E_L)$ calculated using OT-RSH/6-311G (d, p) are listed in eV unit and also the percentage contribution of -CN to the HOMO and the LUMO orbitals of different PDI monomers considered in this study.

Monomers	μ	E _H	E_L	χ	% of -CN Group		
	_				НОМО	LUMO	
Pristine-PDI	0.00	-7.78	-2.34	5.06	0	0	
PDI-(CN) ₂ -a	1.98	-8.37	-3.00	5.69	4.32	4.48	
PDI-(CN) ₂ -b	0.00	-8.34	-3.00	5.67	0.57	2.51	
PDI-(CN) ₄ -a	0.00	-8.87	-3.60	6.23	1.23	4.49	
PDI-(CN) ₄ -b	4.05	-8.83	-3.49	6.16	6.35	4.59	

Table S2: Calculated HOMO (E_H), LUMO (E_L) energies and the HOMO-LUMO gap (ΔE_{H-L}) for all the PDI monomers using OT-RSH, OT-SRSH and OT-SRSH+PCM method with 6-311G (d, p) basis set. All energies are in eV.

Monomer	OT-RSH			OT-SRSH			OT-SRSH+PCM		
	E _H	EL	$\Delta \boldsymbol{E}_{\boldsymbol{H}-\boldsymbol{L}}$	E _H	EL	ΔE_{H-L}	E _H	EL	ΔE_{H-L}
Pristine-PDI	-7.78	-2.34	5.44	-4.68	-1.89	2.79	-4.52	-1.74	2.78
PDI-(CN) ₂ -a	-8.37	-3.00	5.37	-5.41	-2.59	2.82	-5.14	-2.32	2.82
PDI-(CN) ₂ -b	-8.34	-3.00	5.34	-5.34	-2.58	2.76	-4.99	-2.27	2.72
PDI-(CN) ₄ -a	-8.87	-3.60	5.27	-6.05	-3.23	2.82	-5.55	-2.78	2.77
PDI-(CN) ₄ -b	-8.83	-3.49	5.34	-5.90	-3.11	2.79	-5.50	-2.71	2.79

Table S3: Isotropic polarizability (α_{iso}), molecular volume (V_m) and scalar dielectric constant (ε_s) for all gas-phase PDI molecules calculated using OT-RSH/6-311++G (d, p). The first

singlet excited-state S_1 (optically bright and intense one characterized by large oscillator strength given in parentheses) calculated with different functionals (OT-RSH, OT-SRSH and OT-SRSH+PCM) are also tabulated for all functional PDI monomers.

Molecule	α_{iso}	V _m	Es	S ₁ State Energy (eV)					
	(a.u.)	(a.u.)		OT-RSH	OT-SRSH	OT-SRSH			
						+ PCM			
Pristine-PDI	348.263	2770.009	4.34	2.77 (0.70)	2.54 (0.62)	2.35 (0.92)			
PDI-(CN) ₂ -a	379.948	3096.227	4.17	2.71 (0.57)	2.50 (0.50)	2.34 (0.75)			
PDI-(CN) ₂ -b	388.220	2988.549	4.58	2.75 (0.65)	2.53 (0.58)	2.33 (0.87)			
PDI-(CN) ₄ -a	428.959	3436.355	4.29	2.75 (0.62)	2.54 (0.55)	2.33 (0.83)			
PDI-(CN) ₄ -b	415.412	3187.883	4.61	2.72 (0.51)	2.49 (0.45)	2.35 (0.70)			

Table S4: The calculated 0-0 energy $(E_{0-0} = E_{vert.} - \Delta ZPVE - \lambda_{S_1})$, the difference in ZPVE $(\Delta ZPVE)$ and the S_1 state relaxation energy (λ_{S_1}) for all PDI monomers calculated in the condensed-phase using OT-RSH+PCM and OT-SRSH+PCM. The $E_{vert.}$ indicates the vertical excitation energy for the S_1 state. The ZPVE energies for S_0 and S_1 states are obtained using ω B97X-D+PCM. All energies are listed in eV.

Molecule	E	-0	$\Delta ZPVE =$		λ_{S_1}
	OT-RSH OT-SRSH		$E(S_0) - E(S_1)$	OT-RSH	OT-SRSH
	+PCM	+PCM		+PCM	+PCM
Pristine-PDI	2.28	2.14	0.07	0.21	0.13
PDI-(CN)2-a	2.28	2.14	0.05	0.22	0.14
PDI-(CN) ₂ -b	2.25	2.12	0.08	0.21	0.12
PDI-(CN)4-a	2.26	2.13	0.08	0.20	0.12
PDI-(CN) ₄ -b	2.30	2.16	0.05	0.22	0.14

Table S5: Calculated HOMO (E_H), LUMO (E_L) energies and the HOMO-LUMO gap (ΔE_{H-L}) for all functional PDI dimers using OT-RSH/6-311G (d, p). Low-lying four singlet excited-state energies are also provided. Oscillator strengths are listed within the bracket. All energies are in eV.

Dimers	E _H	E _L	ΔE_{H-L}	S ₁	S ₂	S ₃	S 4
Pristine-PDI	-7.64	-2.62	5.02	2.39	2.61	2.77	2.81
				(0.02)	(0.05)	(0.03)	(0.86)

PDI-(CN) ₂ -a (d1)	-8.33	-3.38	4.95	2.41	2.53	2.67	2.73
				(0.02)	(0.04)	(0.21)	(0.49)
						. ,	
PDI-(CN)2-a (d2)	-8.19	-3.38	4.81	2.26	2.54	2.71	2.82
				(0.04)	(0.10)	(0.49)	(0.07)
$PDI-(CN)_2-b(d1)$	-8.30	-3.44	4.86	2.32	2.58	2.80	2.82
				(0.02)	(0.07)	(0.72)	(0.05)
PDI-(CN) ₂ -b (d2)	-8.38	-3.42	4.96	2.43	2.57	2.69	2.81
				(0.02)	(0.07)	(0.02)	(0.77)
PDI-(CN) ₄ -a	-8.93	-4.14	4.79	2.32	2.57	2.79	2.83
				(0.02)	(0.06)	(0.69)	(0.02)
						()	
PDI-(CN) ₄ -b (d1)	-8.71	-3.83	4.88	2.49	2.50	2.65	2.75
				(0.03)	(0.06)	(0.58)	(0.01)
PDI-(CN) ₄ -b (d2)	-8.87	-4.08	4.79	2.37	2.49	2.63	2.67
				(0.02)	(0.13)	(0.01)	(0.49)
				(0.02)	(0.10)	(0.01)	(0.15)

Table S6: Four lowest singlet excite-state energies $(E_{S_n}, n = 1 - 4)$ with the major contribution from occupied \rightarrow unoccupied FMOs replacement and the charge-transfer number (q_{CT}) for all functional PDI dimers calculated in the gas-phase using OT-RSH and also in the condensed-phase using OT-SRSH+PCM with 6-311G (d, p) basis set for all atoms. Oscillator strengths are listed within the bracket. H and L represent HOMO and HOMO, respectively. All energies are in eV.

PDI Dimers	Ex. State		Gas-Phase (OT-RSH)			Condensed-Phase (OT-SRSH+PCM)			
	<i>S</i> _n	E _{Sn} (eV)	Major Contribution	q _{CT}	E _{Sn} (eV)	Major Contribution	q _{CT}		
Pristine-PDI	<i>S</i> ₁	2.39 (0.02)	H→L (0.70)	0.39	2.04 (0.02)	H→L (0.70)	0.65		
	<i>S</i> ₂	2.61 (0.05)	H→L+1 (0.60); H-1→L (0.37)	0.92	2.16 (0.02)	H→L+1 (0.56); H-1→L (0.43)	0.95		
	<i>S</i> ₃	2.77 (0.03)	H-1→L+1 (0.70)	0.61	2.42 (0.07)	H-1→L+1 (0.70)	0.35		
	<i>S</i> ₄	2.81 (0.86)	H-1→L (0.59); H→L+1 (0.37)	0.07	2.45 (1.42)	H-1→L (0.56); H→L+1 (0.43)	0.05		
PDI-(CN) ₂ -a (d1)	<i>S</i> ₁	2.41 (0.02)	H→L (0.63)	0.53	2.09 (0.02)	H→L (0.66)	0.84		
	<i>S</i> ₂	2.53 (0.04)	H→L+1 (0.47); H-1→L (0.43)	0.52	2.16 (0.04)	H→L+1 (0.59); H-1→L+1 (0.34)	0.85		
	<i>S</i> ₃	2.67 (0.21)	H-1→L+1 (0.45); H-1→L (0.40)	0.63	2.30 (0.06)	H-1→L+1 (0.49); H-1→L (0.47)	0.23		

	S ₄	2.74	H-1 \rightarrow L+1 (0.53);	0.30	2.40	H-1→L (0.44);	0.07
	-	(0.50)	H-1→L (0.36)		(1.12)	H-1 \rightarrow L+1 (0.38)	
PDI-(CN) ₂ -a	S_1	2.26	H→L (0.70)	0.45	1.94	H→L (0.70)	0.60
(d2)	1	(0.04)			(0.04)		
	S_2	2.54	H→L+1 (0.66)	0.81	2.14	H→L+1 (0.61);	0.91
	-	(0.10)			(0.07)	H-1→L (0.35)	
	S_3	2.71	H-1→L (0.65)	0.18	2.40	H-1→L (0.61);	0.10
)	(0.49)			(0.93)	H→L+1 (0.35)	
	S_4	2.82	H-1→L+1 (0.70)	0.55	2.50	H-1→L+1 (0.70)	0.40
		(0.07)			(0.14)		
PDI-(CN) ₂ -	S_1	2.32	H→L (0.70)	0.45	1.97	H→L (0.70)	0.61
b (d1)		(0.02)			(0.03)		
	S_2	2.58	H→L+1 (0.62);	0.88	2.15	H→L+1 (0.58);	0.94
		(0.07)	H-1→L (0.33)		(0.04)	H-1→L (0.40)	
	S_3	2.80	$H-1 \rightarrow L (0.61);$	0.13	2.43	$H-1 \rightarrow L (0.58);$	0.06
		(0.72)	$H \rightarrow L+1 (0.32)$		(1.28)	$H \rightarrow L+1 (0.40)$	
	S_4	2.82	H-1 \rightarrow L+1 (0.69)	0.53	2.49	H-1 \rightarrow L+1 (0.70)	0.38
		(0.05)			(0.07)		
PDI-(CN) ₂ -	S_1	2.43	H→L (0.70)	0.40	2.08	H→L (0.69)	0.70
b (d2)	_	(0.02)			(0.01)		
	S_2	2.57	$H \rightarrow L+1 (0.62);$	0.89	2.15	$H \rightarrow L+1 (0.59);$	0.93
	-	(0.07)	$H-1 \rightarrow L (0.32)$	0.50	(0.05)	$H-I \rightarrow L (0.39)$	0.00
	S_3	2.69	H-1→L+1 (0.70)	0.59	2.37	H-1→L+1 (0.69)	0.30
	-	(0.02)		0.11	(0.05)		0.00
	S_4	2.81	H-1 \rightarrow L (0.62);	0.11	2.44	H-1 \rightarrow L (0.59);	0.06
	C	(0.77)	$H \rightarrow L+1 (0.32)$	0.46	(1.30)	$H \rightarrow L+1 (0.39)$	0.61
PDI-(CN)4-a	\mathcal{S}_1	2.32	$H \rightarrow L(0.70)$	0.46	1.99	$H \rightarrow L(0.70)$	0.61
	C	(0.02)	II NI + 1 (0 (1))	0.00	(0.02)	II NI + 1 (0.57).	0.05
	S_2	2.37	$\Pi \neg L + I (0.01);$ $\Pi \downarrow 1 \rightarrow I (0.24)$	0.90	(0.02)	$\Pi \rightarrow L+1 (0.37);$	0.95
	c	(0.00)	$H-1 \rightarrow L(0.34)$	0.10	(0.05)	$H = 1 \rightarrow L (0.42)$	0.05
	\mathcal{S}_3	(0.60)	$H \rightarrow I + 1 (0.34)$	0.10	(1, 21)	$H \rightarrow I + 1 (0.37),$	0.03
	c	(0.09)	$H_1 \rightarrow I + 1 (0.34)$	0.54	(1.21)	$H_{1} \rightarrow I + 1 (0.41)$	0.30
	\mathcal{S}_4	(0.02)		0.54	(0.06)	11-17L+1(0.70)	0.57
PDI-(CN)4-	S.	249	$H \rightarrow L + 1 (0.47)$	0.50	2.12	$H \rightarrow L (0.66)$	0.96
b(d1)	J_1	(0.03)	$H \rightarrow L (0.40)$	0.50	(0.00)	11 7 L (0.00)	0.70
0 (41)		(0.05)	H-1 \rightarrow L (0.32)		(0.00)		
	Sa	2.50	$H \rightarrow L (0.57):$	0.48	2.24	H-1 \rightarrow L+1 (0.66)	0.79
	52	(0.06)	$H \rightarrow L+1 (0.32)$		(0.04)		
	S2	2.65	H-1→L (0.55);	0.03	2.27	H→L+1 (0.54);	0.21
	- 3	(0.58)	$H \rightarrow L+1 (0.41)$		(0.19)	H-1→L (0.35)	
	S _A	2.75	H-1→L+1 (0.67)	0.95	2.36	H-1→L (0.61);	0.04
	т	(0.01)			(0.92)	H→L+1 (0.31)	
PDI-(CN) ₄ -	S_1	2.37	H→L (0.70)	0.39	2.08	H→L (0.69)	0.68
b (d2)		(0.02)			(0.02)	· · ·	
	S_2	2.49	H-1→L (0.66)	0.77	2.13	H-1→L (0.63);	0.87
		(0.13)			(0.10)	H→L+1 (0.32)	
	S_3	2.63	H-1 \rightarrow L+1 (0.70)	0.61	2.35	H-1 \rightarrow L+1 (0.69)	0.32
		(0.01)			(0.05)		

<i>S</i> ₄	2.67	H→L+1 (0.66)	0.22	2.37	H→L+1 (0.63);	0.13
_	(0.49)			(0.93)	H-1→L (0.32)	

Table S7: Singlet excited-state energies for the S_1 and intense one (in eV) of all PDI dimers calculated using OT-RSH, OT-SRSH and OT-SRSH+PCM methods with 6-311G (d, p) basis set for all atoms.

Dimers	OT-	RSH	OT-S	SRSH	OT-SRS	H+PCM
	<i>S</i> ₁	Intense	<i>S</i> ₁	Intense	<i>S</i> ₁	Intense
Pristine-PDI	2.39	2.81	2.07	2.64	2.04	2.45
	(0.02)	(0.86)	(0.01)	(0.81)	(0.02)	(1.42)
PDI-(CN) ₂ -a (d1)	2.41	2.73	2.04	2.55	2.09	2.40
	(0.02)	(0.49)	(0.00)	(0.64)	(0.02)	(1.12)
PDI-(CN) ₂ -a (d2)	2.26	2.71	1.97	2.53	1.94	2.40
	(0.04)	(0.49)	(0.02)	(0.52)	(0.04)	(0.93)
PDI-(CN) ₂ -b (d1)	2.32	2.80	2.02	2.63	1.97	2.43
	(0.02)	(0.72)	(0.01)	(0.71)	(0.03)	(1.27)
PDI-(CN) ₂ -b (d2)	2.43	2.81	2.12	2.63	2.08	2.44
	(0.02)	(0.77)	(0.01)	(0.74)	(0.01)	(1.30)
PDI-(CN) ₄ -a	2.32	2.79	2.05	2.63	1.99	2.45
	(0.02)	(0.69)	(0.01)	(0.66)	(0.02)	(1.21)
PDI-(CN) ₄ -b (d1)	2.49	2.65	2.05	2.48	2.12	2.36
	(0.03)	(0.58)	(0.00)	(0.53)	(0.00)	(0.92)
PDI-(CN) ₄ -b (d2)	2.37	2.49	2.10	2.49	2.07	2.37
	(0.02)	(0.13)	(0.01)	(0.53)	(0.02)	(0.93)

Table S8: The internal electron (λ_e) and the hole reorganization (λ_h) energies from Nelsen's four-point adiabatic potential (AP) method and also from normal modes (NM) analysis for pristine and cyano-substituted PDIs calculated using ω B97X-D. Relaxation energy contributions from the ground (neutral) state $(\lambda_{e/h}^{gs})$ and the excited charged (cationic/anionic) state $(\lambda_{e/h}^{es})$ potential energy surfaces to the total internal reorganization energy (λ_i) are also given in meV unit. Gas-phase values are also provided within the bracket.

Systems	λ_e^{gs}	λ_e^{es}	λ_{e} (AP)	λ_e (NM)	λ_h^{gs}	λ_h^{es}	$\lambda_h(AP)$	λ_h (NM)
Pristine-PDI	189	187	376	382	109	109	218	221
	(202)	(202)	(404)	(408)	(125)	(122)	(247)	(253)
PDI-(CN) ₂ -a	175	176	351	348	118	117	235	240
	(189)	(190)	(379)	(374)	(131)	(129)	(260)	(265)
PDI-(CN) ₂ -b	177	175	352	359	108	108	216	221
	(189)	(187)	(376)	(380)	(120)	(119)	(239)	(245)

PDI-(CN) ₄ -a	169	167	336	348	108	107	215	219
	(177)	(176)	(353)	(360)	(117)	(116)	(233)	(237)
PDI-(CN) ₄ -b	173	173	346	350	118	116	234	244
	(185)	(184)	(369)	(375)	(127)	(126)	(253)	(261)

Table S9: The internal electron (λ_e) and the hole reorganization (λ_h) energies from Nelsen's four-point adiabatic potential (AP) method for pristine and cyano-substituted PDIs calculated using B3LYP-D. Relaxation energy contributions from the ground (neutral) state $(\lambda_{e/h}^{gs})$ and the excited charged (cationic/anionic) state $(\lambda_{e/h}^{es})$ potential energy surfaces to the total internal reorganization energy (λ_i) are also given in meV unit. Gas-phase values are also provided within the bracket.

Systems	λ_e^{gs}	λ_e^{es}	$\lambda_e (AP)$	λ_h^{gs}	λ_h^{es}	$\lambda_h (AP)$
Pristine-PDI	119 (129)	120 (133)	239 (262)	68 (79)	67 (78)	135 (157)
PDI-(CN) ₂ -a	112 (123)	115 (127)	227 (250)	69 (80)	69 (79)	138 (159)
PDI-(CN) ₂ -b	107 (118)	108(119)	215 (237)	66 (74)	66 (74)	132 (148)
PDI-(CN) ₄ -a	100 (108)	100 (109)	200 (217)	65 (70)	65 (70)	130 (140)
PDI-(CN) ₄ -b	109 (119)	110 (121)	219 (240)	69 (76)	68 (75)	137 (151)

Table S10: Marcus charge transfer rates for the electron (k_e) and the hole (k_h) transfer calculated at the room temperature (T = 298 K) for all PDIs considered in the present study adopting the internal reorganization energy λ_i (left) and also the total reorganization energy λ = $\lambda_i + \lambda_o$ (right).

π-Stacked Dimers	Marcus F with λ	Rate (s ⁻¹) $\lambda = \lambda_i$	Marcus Rate (s ⁻¹) with $\lambda = \lambda_i + \lambda_o$		
	k _e	k _h	k _e	k_h	
Pristine-PDI	2.37×10^{12}	6.10×10^{13}	2.12×10^{12}	5.41×10^{13}	
PDI-(CN) ₂ -a (d1)	8.37×10^{7}	2.19×10^{13}	7.49×10^{7}	1.95×10^{13}	
PDI-(CN)2-a (d2)	1.03×10^{13}	1.32×10^{14}	9.18×10^{12}	1.18×10^{14}	
PDI-(CN) ₂ -b (d1)	7.45×10^{12}	1.29×10^{14}	6.67×10^{12}	1.15×10^{14}	
PDI-(CN) ₂ -b (d2)	3.68×10^{11}	5.74×10^{13}	3.29×10^{11}	5.09×10^{13}	
PDI-(CN) ₄ -a	1.01×10^{13}	1.29×10^{14}	9.07×10^{12}	1.15×10^{14}	
PDI-(CN) ₄ -b (d1)	3.93×10^{11}	1.74×10^{11}	3.52×10^{11}	1.55×10^{11}	
PDI-(CN) ₄ -b (d2)	2.24×10^{13}	6.58×10^{12}	2.01×10^{13}	5.85×10^{12}	

Table S11: Calculated electron (μ_e) and hole (μ_h) mobilities obtained at room temperature (T = 298 K) for all PDIs studied here adopting the internal reorganization energy λ_i (left) and also with the total reorganization energy λ (right).

π-Stacked Dimers	Carriers Mobility with $\lambda = \lambda_i$ [cm ² /(V-s)]		Carriers Mobility with $\lambda = \lambda_i + \lambda_o$ [cm ² /(V-s)]		
	μ_e	μ_h	μ_e	μ_h	
Pristine-PDI	0.10	2.70	0.09	2.39	
PDI-(CN)2-a (d1)	3.84×10^{-6}	1.01	3.43×10^{-6}	0.89	
PDI-(CN)2-a (d2)	0.47	6.14	0.43	5.45	
PDI-(CN) ₂ -b (d1)	0.33	5.67	0.29	5.03	
PDI-(CN) ₂ -b (d2)	1.66×10^{-2}	2.58	1.48×10^{-2}	2.29	
PDI-(CN)4-a	0.44	5.61	0.39	4.97	
PDI-(CN) ₄ -b (d1)	2.68×10^{-2}	1.19×10^{-2}	2.39×10^{-2}	0.01	
PDI-(CN) ₄ -b (d2)	1.18	0.35	1.05	0.31	

Table S12: Marcus charge transfer rates $(k_{e/h})$ and the electron (μ_e) and the hole (μ_h) mobilities calculated at room temperature (T = 298 K) for the fully optimized PDI and also the slipped stacked (ss-PDI) and the rotated sandwich (rs-PDI) dimer structures extracted from two different crystal structures considered in the present study. Charge hopping distance (r), electronic coupling (V) and internal reorganization energies (λ_i) for each dimer are also listed. Rates and charge mobilities listed within the bracket are calculated using the total reorganization energy (λ) .

Dimer	r (Å)) (m	l _i eV)	ן (me	/ eV)	Marcus Rate (s ⁻¹)		Mobility (cm²/V.s)	
		λ_e	λ_h	V_{e}	V _h	k _e	k _h	μ_e	μ_h
PDI	3.37	376	218	58	119	2.4×10^{12}	6.1×10^{13}	0.10	2.7
						(2.1×10^{12})	(5.4×10^{13})	(0.09)	(2.39)
ss-PDI	4.68	376	218	40	186	1.13×10^{12}	1.49×10^{14}	0.10	12.72
						(1.01×10^{12})	(1.32×10^{14})	(0.09)	(11.28)
rs-PDI	3.66	376	218	109	95	8.37×10^{12}	3.89×10^{13}	0.44	2.03
						(7.50×10^{12})	(3.45×10^{13})	(0.39)	(1.80)

Figure S1: Side-view of all PDI dimer geometries optimized at ω B97X-D/6-311G (d, p) level of theory. H, C, N and O are indicated by white, grey, blue and red colour balls, respectively. Stacking distances (*d*) are also listed in Å.

Figure S2: HOMO and LUMO iso-surfaces for the pristine PDI and also for a few functional PDIs calculated using OT-RSH functional in the gas-phase. An iso-value of 0.02 e/Å^3 is used. Percentage of -CN group contributions to the HOMO and the LUMO are also listed.