Supporting Information

Tunable band gap and high carrier mobility in stanene by small organic

molecule adsorption and external electric field

Mei-Xia Xiao,* a Xiao Shao, a Hai-Yang Song,* a Zhao Li, a Min-Rong An, a Cheng Heb

- ^a School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
- ^b State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- * Corresponding authors. Email: <u>mxxiao@xsyu.edu.cn (M. X. Xiao)</u>,

gsfshy@sohu.com (H. Y. Song).

Fig. S1 Phonon band structures of (a) C_6H_6 /stanene with B–2 configuration, (b) C_6F_6 /stanene with T–4 configuration and (c) $C_6H_4F_2$ /stanene with B–2 configuration.

Fig. S2 Relative energies of (a) C_6H_6 /stanene with B–2 configuration, (b) C_6F_6 /stanene with T–4 configuration and (c) $C_6H_4F_2$ /stanene with B–2 configuration as a function of time at T = 300 K.

Fig. S3 Band structures of (a) C₆H₆/stanene with B–2 configuration, (b) C₆F₆/stanene with T–4 configuration and (c) C₆H₄F₂/stanene with B–2 configuration with HSE06, respectively.

Fig. S4 PDOS of (a) free-standing stanene, (b) C_6H_6 , (c) C_6F_6 and (d) $C_6H_4F_2$, respectively.

Fig. S5 Under external electric fields, the PDOS of C_6H_6 /stanene with B–2 configuration at (a) $E_{ex} = -0.65 \text{ V/Å}$, (b) $E_{ex} = -0.60 \text{ V/Å}$ and (c) $E_{ex} = 0 \text{ V/Å}$, C_6F_6 /stanene with T–4 configuration at (d) $E_{ex} = -0.90 \text{ V/Å}$, (e) $E_{ex} = -0.85 \text{ V/Å}$ and (f) $E_{ex} = 0 \text{ V/Å}$, $C_6H_4F_2$ /stanene with B–2 configuration at (g) $E_{ex} = -0.70 \text{ V/Å}$, (h) $E_{ex} = -0.65 \text{ V/Å}$ and (i) $E_{ex} = 0 \text{ V/Å}$, respectively.