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1. Supplementary Materials and Methods  
  
1.1. Materials. 
All solvents and chemical solids were purchased from Sigma-Aldrich, UK, unless otherwise 
stated. Solvents were HPLC grade or higher and chemical solids BioUltra analytical grade or 
higher. All water used was deionized and passed through milli-Q water purification system 
before use. The fluorescently-tagged lipid known as Texas Red 1,2-dihexadecanoyl-sn-
glycero-3-phosphoethanolamine (TR-DHPE) was purchased as a solid from Life Technologies 
(Invitrogen). Asolectin lipid extract from soybeans (Soy Asolectin) was purchased from 
Sigma-Aldrich in a dry granulated form. The detergent n-dodecyl α-D-maltoside (α-DDM) was 
purchased from Generon (Anagrade ≥99 % purity, high-alpha) 
 
1.2. Sample preparation.   
The major antenna protein of plants, trimeric LHCII, was extracted from spinach and 
biochemically purified as previously described (see Fig. S1) [1]. Soy Asolectin lipids were 
used as purchased: this lipid extract was used because of previous reports to give excellent 
LHCII stability for nanodiscs [2]. The TR chromophore tethered to a DHPE lipid was used as 
purchased (TR-DHPE), as is typical for lipid bilayer studies [3]. The ApoE422K belting protein 
which forms the scaffold for nanodiscs was produced in bacteria and purified as previously 
described [2]. Analysis of the belting protein by gel electrophoresis confirmed a high purity 
(see Fig. S2). 
 
Lipid stocks were prepared for the formation of nanodiscs and liposomes by initially 
dissolving a known mass of Soy Asolectin lipids with a chloroform: methanol mixture (5:2). 
TR-DHPE was then dissolved into chloroform and added to the lipid stocks when required, 
always at a molar ratio of 75:1 Soy Asolectin: TR-DHPE (1.3 % mol/mol), this concentration 
aligns with a highest TR-to-lipid ratio previously used for TR-LHCII proteoliposomes [4], and 
was chosen because a relatively high concentration of TR is necessary to achieve comparable 
LHCII and TR absorbance which allows high signal-to-noise for ultrafast spectroscopy. Mixed 
lipids in organic solvents were then carefully dried to a thin film under clean nitrogen gas. 
These lipid thin films were then placed in a vacuum desiccator to remove any residual solvent 
(~3 hours). Lipid stocks were flash frozen in liquid nitrogen and stored at -80°C.   
   
Liposomes (lipid vesicles) were prepared following standard procedures involving probe 
sonication [4]. Nanodiscs containing LHCII were prepared following a previously published 
protocol with minor modifications as described briefly below [2]. For nanodisc formation, lipid 
stocks were taken from the freezer, brought to room temperature, and then incubated in an 
detergent-containing aqueous solution overnight (20 mM HEPES, 100 mM NaCl, 0.5% α-
DDM, pH 7.5), in order to solubilise lipids into detergent micelles. Nanodisc belting proteins 
(ApoE422K monomers), detergent-solubilised lipids and LHCII trimers were mixed in a 12.5: 
3000: 1 ratio and incubated at 4°C for one hour with shaking. Polystyrene beads (Bio-Beads 
SM-2 adsorbents, Bio-Rad) were then added to samples up to 2/3 of the overall sample volume 
and incubated at 4°C with shaking for one hour to remove detergent. During this process the 
LHCII-lipid-TR nanodiscs will self-assemble. Nanodisc samples were then purified through a 
Ni-NTA affinity column to remove any material that was not incorporated into the histidine-
tagged nanodiscs, a representative UV chromatogram from this stage is shown in Fig. S3. 
During Ni-NTA purification the running buffer for column binding contained 40 mM 
Imidazole, this was increased to 400 mM Imidazole for the column elution buffer.  The sample 
was then dialysed, using 10,000 Da cutoff dialysis tubing, into a new buffer of 20 mM HEPES 
100 mM NaCl (pH 7.5) to remove any residual elution buffer from the Ni-NTA column. 
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Immediately after formation, samples were stored at 4°C and only brought to room temperature 
for steady state spectroscopy measurements (typically for less than 1 hour) and were 
maintained at 4°C during longer TCSPC and TA measurements. Over the measurement period 
(1-3 days after sample formation), we note the following: (i) cold temperature storage (4°C) 
was always used (and is recommended), (ii) there were no peak shifts observed in the linear 
absorption spectra (i.e., the Chl a Qy absorption maximum remained stable at ~673 nm), (iii) 
LHCII and TR photobleaching is 1-5% for typical steady-state and TCSPC acquisitions of this 
kind (judged from a rapid steady-state fluorescence spectrum before vs after dataset 
acquisition). Long-term stability was not assessed in the current study and we note that for 
future work assessing any industrial applications it would be necessary to perform a systematic 
analysis of the stability. 
 
1.3. Steady-state absorption, fluorescence emission, fluorescence excitation spectroscopy.  
Before spectroscopy measurements, proteoliposome samples were diluted in a buffer of 40 mM 
NaCl, 20 mM HEPES (pH 7.5), to obtain a large enough volume for use in a 1 x 1 cm quartz 
cuvette (3 to 3.5 mL) at a low enough absorbance of ≤0.1 (per cm) at 675 nm to avoid inner 
filter effects [5]. Absorption spectroscopy was performed using an Agilent Technologies Cary 
5000 UV-Vis-NIR absorption spectrophotometer equipped with an “integrating sphere” (also 
called a Diffuse Reflectance Accessory, Agilent) to remove any minor scattering effects.   
  
Steady-state fluorescence spectroscopy was performed using an Edinburgh Instruments 
FLS980 fluorescence spectrophotometer equipped with dual excitation monochromators and 
dual emission monochromators. Samples were maintained at 20 °C and gently stirred during 
all measurements using a thermoelectrically cooled cuvette-holder with magnetic stirring 
capabilities (Quantum Northwest TC 1 Temperature Controller). For steady-state emission 
spectra, a 450W Xenon arc lamp was used for excitation and a red-sensitive-PMT for detection 
(Hamamatsu R928 PMT). Emission scans with selective excitation of LHCII were acquired 
with excitation at 473 nm collecting emission from 500-800 nm (2 nm and 1 nm bandwidth 
excitation and emission slits, respectively). Emission scans with selective excitation of Texas 
Red were acquired with excitation at 540 nm collecting emission from 550-800 nm (1 nm 
bandwidth for both excitation and emission slits). Data acquisition parameters were 0.5 nm 
steps, integrating 0.1 s/ step and five scans averaged for all. Fluorescence excitation 
measurements were acquired with emission collected at 686 nm (to be selective for LHCII 
emission) and scanning over an excitation range of 380 - 800 nm (1 nm and 2 nm bandwidth 
for excitation and emission slits, respectively). Data acquisition parameters were 1 nm steps, 
integrating 0.1 s/ step and a single scan for all samples.  
  
1.4. Time-resolved fluorescence spectroscopy.  
The fluorescence decay profiles were measured by time-correlated single photon counting 
(TCSPC). The excitation source was generated by coupling the output of a Ti:sapphire 
oscillator (MaiTai BB, SpectraPhysics; centered at 800 nm, 80 MHz repetition rate) into a 
nonlinear photonic crystal fiber (FemtoWhite 800, NKT Photonics), and then passing the 
generated white light through a 550 nm bandpass filter (ET550/15x, Chroma) to selectively 
excite the TR donor. The excitation beam was focused into a 100 μm spot on a 1 cm pathlength 
quartz cuvette containing the sample at an optical density of 0.08 per cm at 550 nm. The 
emission from the sample was detected by a single-photon-detecting avalanche photodiode 
(PDM Series, Micro Photon Devices), and the arrival time of each photon was recorded by a 
timing module (PicoHarp 300, PicoQuant, Inc.). Two different emission filters were used to 
selectively monitor the fluorescence of the TR donor (Em1: 560‒600 nm; RPE560LP, Omega 
and FES0600, Thorlabs) and LHCII acceptor (Em2: >665 nm; BLP01-647R-25, Semrock), 
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respectively, as shown in Fig. S8. The polarization of the excitation beam was vertical, and the 
emitted fluorescence was detected at a magic angle (54.7 degrees) using a polarizer. 
 
The data were measured in two different modes. All of the individual fluorescence decay traces 
presented in this work were measured by integrating the fluorescence signal over each emission 
wavelength range (Em1 or Em2) for a higher signal-to-noise ratio. Spectrally-resolved 
fluorescence data were obtained with spectral interferometry in the time domain (Gemini, 
NIREOS), and then Fourier transformed to yield the time-resolved fluorescence spectra 
(TRFS) as shown in Fig. 2 of the main text. For TRFS measurements, a 560 nm longpass 
emission filter (RPE560LP, Thorlabs) was used. The resolution of the emission wavelength 
axis was 0.7 nm. The interferometer was combined with the timing module described above to 
give fluorescence decay traces at each wavelength. Further details about the spectral 
interferometry setup and data analysis can be found elsewhere [6]. 

 
The excitation pulse energy was 30 fJ for all three samples. The experiment was repeated at 
10 fJ and 100 fJ, and no power dependence was observed. The instrument response function 
(IRF) was determined by measuring scattered excitation light using a dilute solution of 
colloidal silica (Ludox, MilliporeSigma) [7], and has a width of 50 ps. Fluorescence decay 
traces were fitted with a mono- or bi-exponential function using iterative reconvolution with 
the IRF.  

  
1.5. Transient absorption (TA) spectroscopy.   
Details of the experimental setup can be found elsewhere [8]. The pump and probe pulses were 
produced by white light generation by focusing the output of a Ti:sapphire regenerative 
amplifier (Libra, Coherent; centered at 800 nm, 5 kHz repetition rate) into a chamber filled 
with pressurized argon gas at 20 psi. The residual fundamental and near-infrared region of the 
white light were filtered out with the combination of a dichroic mirror (DMSP805, Thorlabs) 
and a bandpass filter (FGS600, Thorlabs). For preferential excitation of the TR donor, the pump 
pulse was further passed through a bandpass filter (FES0600, Thorlabs), which resulted in the 
spectrum shown in Fig. S10A. With this pump spectrum, we estimate a 20.5% direct excitation 
of the higher vibronic bands of chlorophyll Qx/Qy states in LHCII [9]. The spectrally filtered 
pump pulse was compressed with chirped mirrors (PC70, Ultrafast Innovations). The temporal 
width of the pump pulse was measured to be 26 fs by autocorrelation (Fig. S10B), and the 
dispersion in the probe was corrected for after data collection. The pump and probe pulses were 
focused into a 150 μm spot on a 1 mm pathlength quartz cuvette containing the sample at an 
optical density of 0.25/mm at the absorption peak maximum of each sample. The pump pulse 
was modulated with a chopper at 2.5 kHz, and the change in probe intensity was collected shot 
by shot at 5 kHz with a home-built spectrometer containing a linear CCD (Aviiva EM4-BA8, 
e2v Imaging). The excitation pulse energy was 6 nJ, which corresponds to 2.26×1013 photons 
per pulse per cm2, previously reported to be in the linear regime [10]. The transient absorption 
measurements were performed with vertical pump and vertical probe polarization. The sample 
was continuously flowed with a peristaltic pump to prevent photodegradation and repetitive 
excitation of the same spot. The sample reservoir was kept at 4°C throughout the measurement. 
Global analysis of the TA data was performed using the Glotaran software [11, 12]. 
  
  
1.6. Size characterization of nanodiscs.  
Dynamic light scattering (DLS) measurements of liposomes and nanodiscs were performed 
using a ZetaSizer Nano (Malvern, UK). When acquiring data on a sample set, DLS was 
typically performed after absorption and fluorescence spectra had been acquired, in standard 
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sample buffers, using 80 μL polystyrene disposable cuvettes. Measurements were taken using 
a backscatter geometry (collection at 173°) and with a 633 nm laser probe. Temperature was 
set to 20 °C and at least three independent DLS runs were performed for each sample. 
  
Transmission electron microscopy (TEM) was performed as follows. Nanodisc samples were 
prepared as described in 1.1 and diluted 10x in a buffer of 20 mM HEPES, 100 mM NaCl (pH 
7.5). 5.0 μL of diluted nanodisc sample was deposited onto freshly glow-discharged carbon-
coated copper grids and incubated for 30 s (grids were prepared in-house at the Astbury Centre 
TEM Facility at University of Leeds). Samples were then washed with 20 mM HEPES, 100 
mM NaCl (pH 7.5) and then 5 μL of 1% uranyl acetate was added for a further 30 s incubation. 
Sample and buffer were then removed from the carbon grid which was then left at room 
temperate until completely “air dry”. TEM was performed using a FEI T12 transmission 
electron microscope (FEI Tecnai T12, USA) at a range of magnifications. Analysis of particle 
sizes was performed manually using ImageJ.  
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2. Supplementary Data  
 
2.1. Biochemical data on the purification of LHCII protein. 
 
The major antenna protein of plants, trimeric LHCII, was extracted from spinach and 
biochemically purified as described in [1]. The LHCII protein’s trimeric state and high degree 
of purity was confirmed by polyacrylamide gel electrophoresis (PAGE), as shown in Fig. S1. 
  
 

 
Fig. S1. PAGE to assess the purity of LHCII protein after its biochemical isolation. SDS PAGE 
gel with either Coomassie stain (left panel) or SYPRO-RUBY stain (middle panel). Gel lanes 
show, in order left to right: protein standard (with masses indicated), LHCII “before FPLC” 
(containing impurities, i.e., before size exclusion chromatography), purified trimeric LHCII 
(i.e., trimer fractions after size exclusion chromatography), purified monomeric LHCII 
(monomer fractions after size exclusion chromatography). Native-PAGE gel (right panel) 
was ran at 4°C and then stained with Coomassie. Native gel lanes show, in order: LHCII 
“before FPLC”, purified trimeric LHCII, and purified monomeric LHCII, as 
above. Electrophoresis methodology was as previously described [1]. 
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2.2. Biochemical data on the purification of the ApoE422K belting protein.  
 
The ApoE422K belting protein was purified as described in methodology section 1.2 of this 
document. Its purity was confirmed by polyacrylamide gel electrophoresis (PAGE), as shown 
in Fig. S2. 
 

 
Fig. S2. PAGE to assess the purity of the nanodisc belting protein after its biochemical 
isolation. SDS-PAGE gel with Coomassie blue stain. Gel lanes shown are, left to right:  protein 
standard ladder (with masses indicated) and the ApoE422K membrane scaffold protein 
(nanodisc belting protein). Image analysis using ImageJ software shows ~90% of signal in the 
ApoE422K lane is associated with the band situated at ~22kD, which is the expected size of 
the belting protein.  
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2.3. Chromatography data from the nanodisc purification.  
The UV absorption trace of the Ni-NTA (nickel-nitrilotriacetic acid) column purification of 
LHCII nanodiscs, where the ApoE422k belting protein contains the histidine tag. Fig. S3 is 
measured as liquid leaves the column and is collected into fractions. The initial peak (labelled 
Load sample) in the UV trace relates to the increased UV absorption of lipids and proteins 
which have not been reconstituted into the nanodiscs leaving the column. The flat section 
(labelled Equilibrate) relates to the washing step which ensures all unbound material has left 
the column. The arrow labelled Elute indicates the point where a high imidazole buffer is used 
to un-bind histidine-tagged nanodiscs from the column, and the sharp peak immediately after 
(labelled Sample peak) is caused by the increased UV absorption of nanodisc sample and is 
collected. The baseline is higher after elution than before elution due to the higher 
concentration imidazole buffer used for elution having increased UV absorption (this does not 
affect the sample collection as the sharp peak due to the sample can be easily resolved).  
 
Successful formation of nanodiscs was also qualitatively assessed from the colour of eluted 
fractions after Ni-NTA purification. An observed pigmentation in eluted sample fractions of 
either green (for LHCII nanodisc samples) or grey (for TR-LHCII nanodisc samples) at the 
expected time during chromatography, i.e., only after adding the elution buffer, was a first 
suggestion that binding and then elution was successful and that the majority of LHCII-
associated pigments and Texas Red were within nanodiscs.  
 
 

 
Fig. S3 UV absorption trace showing the Ni-NTA column purification of LHCII nanodiscs.  
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2.4. Size characterization of nanodiscs.  
Transmission electron microscopy (TEM) images of the representative LHCII-
only nanodisc sample at different levels of magnification are shown in Fig. S4A-D. A 
histogram of the nanodisc diameters that were measured (n=107) is shown in Fig. S4E. The 
TEM images show a distribution of nanodisc diameters with an average of 21±7 nm (error 
value is the calculated standard deviation). This value is slightly lower than the expected size 
of LHCII loaded nanodiscs of 25-30 nm [13]. However, this is not surprising because 
“unloaded” nanodiscs were also anticipated due to the deliberate excess of ApoE422K and 
lipids that were used (necessary to bias assembly towards 1 LHCII per disc) and it is known 
that these lipid-only nanodiscs typically have a smaller diameter [14]. The size distributions 
for nanodiscs measured with dynamic light scattering (DLS) are shown in Fig. S4F-G: 
LHCII nanodiscs (green line), TR-LHCII nanodiscs (blue line) and TR liposomes (red line) 
are displayed. The DLS graph for "intensity vs size" shows a consistent difference in size for 
the populations of liposomes vs the population of nanodiscs. For each sample, three repeat 
measurements were taken and importantly a single roughly Gaussian distribution was found 
for all samples which suggested a mostly homogeneous population, rather than multiple peaks 
which would be found for heterogeneous samples (see Fig. S4F). The absolute values for size 
are not accurate, because DLS tends to overestimate the size of any distribution because larger 
particles scatter much more than smaller particles. Conversion of this data to "volume vs size" 
and averaging give a more accurate representation of the size (see Fig. S4G). The positions of 
the peak maxima of the volume/size distributions can then be assessed. Overall, this leads to a 
best estimate of 24 nm, 28 nm and 42 nm for the LHCII nanodiscs, TR-LHCII nanodiscs and 
TR liposomes, in good agreement with the TEM data for the representative nanodisc sample. 
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Fig. S4. Size characterization of the nanodiscs samples by transmission electron microscopy 
(TEM) and dynamic light scattering (DLS). (A)-(D) TEM images of LHCII only nanodiscs at 
different levels of magnification. (E) Size distribution histogram of nanodisc diameter in TEM 
images (n=107), images were analyzed using the ImageJ software’s ‘measure’ function and 
manually drawing profiles across the centers of each particle in the images. (F-G) DLS particle 
distribution data comparing the nanodisc and liposome samples (n=3 for each sample). (F) 
Intensity-weighted size distribution. (G) Volume-weighted size distribution, where data is 
weighted by the volume of the particle. In DLS, intensity^3 is proportional to volume. 
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2.5. Comparison of the absorbance spectrum of LHCII between different samples as 
prepared: in detergent, proteoliposomes and nanodiscs.  

 

The only noticeable absorption difference in the LHCII absorption spectra is a slight blueshift 
of the peak representing the Chl a Qy, from 675 to 674 nm from detergent to nanodiscs, which 
could reflect the change in local environment from detergents to lipids. Similar subtle spectral 
shifts for LHCII in membrane discs as compared to detergent have previously been reported 
[2]. This compares favourably to typical LHCII proteoliposome samples where more 
significant changes in spectral shape and blue-shifts of 1-3 nm are typical [3, 15]. 

 

 
  
Fig. S5. Comparison of absorption spectra of: (i) LHCII reconstituted into liposomes (i.e., 
proteoliposomes), (ii) LHCII reconstituted into nanodiscs and (iii) isolated LHCII (in detergent 
micelles, as purified). Small spectral shifts are observable for LHCII within liposomes and 
nanodiscs relative to the starting material of isolated LHCII. All spectra are normalised to 1.0 
at the Chl a absorption peak at ~675 nm for visual clarity.   
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2.6. Decomposition of absorption and emission spectra in order to separate the 
contributions due to LHCII and TR.  
As part of the process of quantifying the concentration of Texas Red, the absorption spectrum 
of the TR-LHCII nanodisc was decomposed into components originating from the absorption 
of TR and LHCII, because LHCII overlaps throughout the TR absorption range. To obtain the 
“TR-only” component, a representative LHCII absorption spectrum, collected in detergent and 
normalized to the Chl a Qy peak at 675 nm, was subtracted from the TR-LHCII spectrum, to 
give results as shown in Fig. S6A.   
 
To quantify the relative fluorescence intensity of samples (see section 2.8), the LHCII and TR 
component peaks within fluorescence emission spectra were also decomposed in a similar 
manner to absorption spectra. To obtain the “LHCII-only” component of fluorescence, a 
representative TR emission spectrum, collected from TR within liposomes, was normalised to 
the TR emission peak at 610 nm and then subtracted from the TR-LHCII spectrum (Fig. 
S6B).  To obtain the “TR-only” fluorescence component, a representative LHCII emission 
spectrum was normalised to roughly 80% of the TR-LHCII emission at ~681 nm 
(LHCII Chl a Qy peak) and then subtracted, resulting in spectra as in Fig. S6C. This % value 
was found empirically (via multiple iterations) to be the optimal value which produces a 
decomposed spectrum for TR: this is because the value for TR emission at 681nm is known to 
be roughly 20% of its peak maximum at 610 nm (as determined from fluorescence 
spectroscopy of pure isolated Texas Red). The end result of the decomposition procedure for 
the TR-LHCII nanodisc fluorescence spectrum is shown in main text Fig. 1C (solid lines). 
 

 
Fig. S6. Example results of the manual spectral decomposition procedure described. Analysis 
is shown for isolating: (A) TR absorbance, (B) LHCII fluorescence emission, and (C) TR 
fluorescence emission. All analysis was performed using Origin Pro (v.9) graphing software. 
All absorption spectra were “baselined” to give an absorbance of zero at 800 nm as expected 
in these samples, to remove any slight differences in the background noise (any minimal 
background noise in fluorescence spectra is removed during data acquisition). All spectra were 
corrected for the factor by which each sample was diluted, by multiplying by the dilution factor.    
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2.7. Quantification of the concentration of LHCII and TR after sample preparation.  
One cannot assume that samples at the end of a multi-step preparation procedure will contain 
the same amount of material as input into at the start of the procedure because many 
biochemical procedures are inefficient and some material may be lost. In order to quantify the 
final composition of our nanodisc and liposome samples, as prepared, we applied the well-
known relationship that the concentration of an optically-active component is directly 
proportional to its absorbance (the Beer-Lambert law), where the proportionality constant is 
taken from the absorbance of sample at known concentration. 
 
Thus, LHCII content was estimated from the absorbance in the region expected for the Chl a 
Qy peak of LHCII, specifically, from the integrated area under the absorbance spectrum from 
635-700 nm and a conversion factor (absorption coefficient) to give a concentration in 
moles/liter. No spectral de-composition was needed, even for the TR-LHCII nanodisc sample, 
because there is no significant overlap of absorption from Texas Red >630 nm. Area was used 
to ensure that any slight peak broadening did not lead to a loss of relative 
absorption. Concentration was calculated as: 
 

      𝐿𝐻𝐶𝐼𝐼 =
1

6.73 × 10଺
× න 𝐴(𝜆) 𝑑𝜆

଻଴଴ ௡௠

଺ଷହ ௡௠

 

 
where the constant 6.73 × 106 M-1 cm-1 is an area-based molar absorption coefficient, i.e., the 
integrated area which represents 1 mol/L LHCII in a 1-cm pathlength cuvette as measured from 
a control sample of low concentration LHCII in 0.03 % α-DDM, 20 mM HEPES, pH 7.5.  
 
Similarly, Texas Red content was assessed from the absorbance peak height at 591 nm and a 
conversion factor (absorption coefficient) with TR-DHPE concentration in moles/liter 
calculated. Here, peak height was used (as opposed to integrated area) because TR was never 
observed to undergo any spectral broadening or shifts. For the TR-LHCII nanodisc sample, a 
spectrally decomposed absorbance spectrum was used, as in Fig. S6A (for the TR liposomes 
sample this was not necessary as TR was the only optically-active component). Concentration 
was calculated as: 

𝑇𝑅 =
𝑝𝑒𝑎𝑘 ℎ𝑒𝑖𝑔ℎ𝑡

85,000
 

 
where the constant 85,000 M-1 cm-1 is the molar absorption coefficient, i.e., the absorbance 
which represents 1 mol/L TR in a 1-cm path length. This value was provided by the supplier 
of TR-DHPE and is in agreement with other published works [16].  
 
The Total lipids (Soy Asolectin) in the starting material was 1.523 mM for the nanodiscs 
samples and 4.193 mM for the liposomes sample. 
 
Table S1 shows the calculated values for LHCII and TR concentration for all samples assessed 
in the current study (highlighted in red). The molar ratios of lipid, TR and LHCII relative to 
each other can be calculated, in order to assess the relative effectiveness of their incorporation 
into model membranes, shown in Table S2. Specifically: (i) the TR–to-LHCII ratio was 
calculated simply by using the concentrations of TR and LHCII estimated from absorption 
spectroscopy, (ii) the LHCII-to-lipid ratio was calculated from the concentration of LHCII and 
assumed that there was no loss of lipid, and (iii) the ratio of TR-to-lipid was assumed to be 
maintained at 1:75, in other words, that the Soy Asolectin lipid had the same incorporation 
yield as the TR-tagged lipids, as is typical [17].  
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The TR:LHCII ratio achieved in the nanodisc sample was very close to the 40:1 ratio in the 
starting mixture. The LHCII nanodisc sample had an estimated lipid:LHCII ratio of ~3000:1. 
The TR liposome sample was prepared with the same lipid mixture as the TR-LHCII nanodiscs 
resulting in a 75:1 lipid:TR ratio. These values correspond to consistent yields of both LHCII 
and TR components with final ratios similar to the that in the starting material. 
 
 
  
  
 
Table S1. Analysis of steady-state spectroscopy data from each sample in order to calculate: 
(i) concentration of LHCII, (ii) concentration of TR, (ii) energy transfer efficiency (ETE) and 
(iii) LHCII fluorescence enhancement. For both fluorescence emission measurements were 
made using excitation light that was selective for TR, to test the TR-to-LHCII transfer 
(excitation at 540 nm). The procedure for calculating the relative fluorescence, ETE and LHCII 
enhancement is detailed in the next section, supplementary section 2.8. 
 

Sample  
description 

Total  
lipids  

LHCII  
Absorbance 

LHCII 
Content 

TR 
Absorbance 

TR 
Content 

Relative  
TR  

Fluorescence 

ETE  
(steady 
-state) 

Relative  
LHCII 

Fluorescence 

LHCII  
Fluorescence 
Enhancement 

 (mM) 
(integrated area  

635-800 nm,  
dil. corrected) 

(µM) 
(peak height  
at 591 nm,  

dil. corrected) 
(µM) 

(peak height at   
610 nm) 

(%,  relative to 
isolated TR) 

(integrated area 
625-800 nm)  

(%, relative to 
isolated LHCII) 

LHCII nanodiscs 1.52 40.7 0.60 - - - - 1.52 × 1014 96.8 

TR liposomes 1.52 - - 4.73 55.9 1.23 × 1012 - - - 

TR-LHCII nanodiscs 4.19 35.9 0.53 1.72 20.3 4.68 × 1011 62.0 4.00 × 1014 255 

 
  
 
 
Table S2.  Calculated ratios of lipids to LHCII and/or TR components in all samples.  
 

Sample description  
Total  
lipids  

Calculated concentration Lipid: LHCII Lipid: TR TR: LHCII 

  (mM) 
LHCII content 

(µM) 
TR content 

(µM) 
(ratio) (ratio) (ratio) 

LHCII nanodiscs 1.52 0.60 0.0 2540 - - 
TR liposomes 4.19 0.00 55.9 - 75 - 
TR-LHCII nanodiscs 1.52 0.54 20.3 2820 75 38 
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2.8. Quantification of TR-to-LHCII energy transfer efficiency and quantification of 
LHCII fluorescence enhancement for TR-LHCII nanodiscs. 
 
Considering either the TR molecule or the LHCII protein, the “relative fluorescence intensity” 
was defined as the measured fluorescence intensity at the wavelengths of interest divided by 
its concentration (using the concentration calculated from absorbance data, as in section 2.7, 
and absolute values of fluorescence emission calculated from TR and LHCII emission spectra, 
as in section 2.6): 

𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑻𝑹 𝒇𝒍𝒖𝒐𝒓𝒆𝒔𝒄𝒆𝒏𝒄𝒆 =
௠௘௔௦௨௥௘ௗ ்ோ ௘௠௜௦௦௜௢௡ ௖௢௨௡௧௦

௖௔௟௖௨௟௔௧௘ௗ ்ோ ௖௢௡௖௘௡௧௥௔௧௜௢௡
   

𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑳𝑯𝑪𝑰𝑰 𝒇𝒍𝒖𝒐𝒓𝒆𝒔𝒄𝒆𝒏𝒄𝒆 =
௠௘௔௦௨௥௘ௗ ௅ு஼ூூ ௘௠௜௦௦௜௢௡ ௖௢௨௡௧௦

௖௔௟௖௨௟௔௧௘ௗ ௅ு஼ூூ ௖௢௡௖௘௡௧௥௔௧௜௢௡
   

 
Then, the efficiency of resonance energy transfer can be calculated from the quenching of the 
fluorescence of the donor molecule, in our case, TR. Assessing this from the steady-state 
fluorescence spectroscopy data, Energy Transfer Efficiency is calculated by the following 
well-established relationship [18, 19]: 
 

𝐸𝑇𝐸 = 1 −
𝐹஽஺(𝑇𝑅)

𝐹஽(𝑇𝑅)
 

 
where FDA and FD are the relative TR fluorescence in the presence or absence of LHCII, 
respectively. Here, FD represents fluorescence measured for TR within liposomes (i.e., the 
sample shown in the table) as the appropriate control sample where there are no TR-LHCII 
interactions and no quenching. 
 
Next, the “acceptor enhancement” due to the presence of the energy donor molecule can be 
found. In our case, this is the increase in the fluorescence intensity from LHCII due to the 
energy transfer from TR. Assessing this from the steady-state fluorescence spectroscopy data, 
LHCII fluorescence enhancement is calculated as follows [4]: 
 

𝐿𝐻𝐶𝐼𝐼 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 =
𝐹஽஺(𝐿𝐻𝐶𝐼𝐼)

𝐹஺(𝐿𝐻𝐶𝐼𝐼)
 

 
where FDA and FA are the relative LHCII fluorescence in the presence or absence of TR, 
respectively. Here, FA represents fluorescence measured for LHCII isolated in detergent as the 
appropriate control sample where there are no protein-protein interactions and no quenching 
(measured as 1.57 × 1014 counts). 
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2.9. Energy transfer efficiency calculations using linear absorption and fluorescence 
excitation spectra.  
Comparison between fluorescence excitation spectra and linear absorption (“1–Transmission”) 
spectra can indicate the connectivity of chromophores within LHCII, and we would expect 
perfectly overlapping spectra if all chromophores are well connected as all energy absorbed by 
the system would manifest as fluorescence from the terminal emissive state. Comparison of 
fluorescence excitation and absorption spectra can also be used to determine the energy transfer 
efficiency between donor and acceptor molecules which undergo FRET. These two types of 
spectra were collected for LHCII nanodisc samples with and without TR-DHPE. Fluorescence 
excitation spectra were collected by selectively collecting LHCII emission at 686 nm and 
scanning over a range of excitation wavelengths. Linear absorption spectra were calculated as 
one minus the sample transmission (1 – T). Sample transmission, T, is defined as the fraction 
of the incident beam intensity which is transmitted through the sample (I் I଴⁄ ), can be obtained 
from a sample’s absorbance using the relationship:  
 

𝑇 =
I்

I଴
= 10ି஺௕௦ 

where the logarithmic absorption, Abs, is the standard measurement made by the instrument:  
   

𝐴𝑏𝑠 = logଵ଴ ൬
I଴

I்
൰ 

The excitation spectrum and linear absorption spectrum for LHCII nanodiscs (green lines in 
Fig. S7) are very closely matching suggesting that energy absorbed at any wavelength is 
transferred to the same terminal fluorescence emitter. This is excellent evidence that LHCII is 
intact and that the inter-pigment energy transfer pathway has not been disrupted when 
reconstituted into nanodiscs.   
   
If the excitation spectrum shows lower intensity than the linear absorption there is less than 
100% energy transfer between excitation donors and acceptors at that wavelength. The ratio of 
fluorescence excitation to linear absorption over the donor region is therefore directly related 
to ETE, which can be calculated as follows:  

𝑬𝑻𝑬 = 𝟏 −  
(𝟏 − 𝑻𝑫) −  𝑬𝒙𝑫

(𝟏 − 𝑻𝑫)
 

where TD = Donor transmission maximum; ExD = Donor excitation maximum. 
 
For the TR-LHCII nanodiscs sample (blue lines in Fig. S7), the excitation spectrum appears to 
be around two-thirds of the height of the linear absorption spectrum over the region of TR (525-
625 nm). Using the above equation, an energy transfer efficiency of 65% is calculated.  
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Fig. S7. LHCII fluorescence excitation (Ex) and linear absorption (1-T) spectra for LHCII 
nanodiscs with and without Texas Red. Fluorescence excitation spectra were collected 
monitoring the emission at 686 nm (selective for LHCII). Both spectra were normalised to 1.0 
at the LHCII Chl a Qy absorption peak at ~675 nm, in order to allow comparison.  
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2.10 Estimating the proportion of TR only nanodiscs and true ETE in TR-LHCII 
nanodiscs 

If we assume that nanodiscs have a composition of either 1500:20:1 DOPC:TR:LHCII (single 
LHCII nanodisc) or 1500:20 DOPC:TR (no LHCII) and our calculated ratio is 2870:38.3:1 
then this implies that we would expect <50% of nanodiscs to be without LHCII. For these, the 
TR fluorescence intensity will be at its maximal “unquenched” level (i.e., donor-only).  

 
Calculation 1 – Estimating the fraction of nanodiscs that contain LHCII from steady-
state fluorescence data of TR quenching and the time constants from TA: 

In our measurements, we will observe the quenched fluorescence of the ensemble population 
of nanodiscs, so if we term the two nanodisc sub-populations ND-LHCII and ND-0 for those 
containing LHCII and those that do not contain LHCII, respectively:  

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑙𝑢𝑜𝑟. 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝐹(𝑞𝑢𝑒𝑛𝑐ℎ𝑒𝑑) =  
𝐹(𝑇𝑅ே஽ି଴) + 𝐹(𝑇𝑅ே஽ି௅ு஼ூூ)

𝐹൫𝑇𝑅ௗ௢௡௢௥ି௢௡௟௬൯
 

 

F(quenched) was measured as 38% as calculated from Fig. 1C. 

The fluorescence of each sub-population will be related to its fluorescence quantum yield (QY) 
and the proportion of the total population that it represents (N or %), as:  

𝐹 = 𝑄𝑌 ∙ 𝑁 

If we define the relative fluorescence quantum yield of each subpopulation as follows:  

𝑄𝑌(𝑇𝑅ே஽ି଴) = ൫𝑇𝑅ௗ௢௡௢௥ି௢௡௟௬൯ = 1 

 

 
and the relative percentages of TRND-0 and (TRND-LHCII) as x and (100 – x). 

So:          𝐹(𝑞𝑢𝑒𝑛𝑐ℎ𝑒𝑑) =  
௫ା(ଵ଴଴ି௫)∙ொ௒(்ோಿವషಽಹ಴಺಺)

ଵ଴଴
   Eqn (1) 

 
We can calculate the relative fluorescence quantum yield expected for nanodiscs containing 
LHCII using the energy transfer time found from the TA data. If we consider only the 128 ps 
TA component (loosely-coupled TR): 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑄𝑌 =  
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑐𝑎𝑦

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑐𝑎𝑦 + 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑐𝑎𝑦
 

 

𝑄𝑌(𝑇𝑅ே஽ି௅ு஼ூூ) =
൫𝜏௙௟൯

ିଵ

൫𝜏௙௟൯
ିଵ

+ (𝜏ா்)ିଵ
=

(3940𝑝𝑠)ିଵ

(3940𝑝𝑠)ିଵ + (128𝑝𝑠)ିଵ
= 0.0314 

 
 
If we consider only the 3.7 ps TA component (tightly-coupled TR) then the calculation gives 
QY= 0.000938. Furthermore, within the nanodiscs containing TR and LHCII there may be a 
population of TR molecules that are not directly coupled to LHCII, however, these may transfer 
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excitation via TR-to-TR transfer to LHCII. These calculations are only estimates because we 
do not know the fraction of TR which is loosely- or tightly- coupled to LHCII from the global 
analysis, therefore it seems reasonable to use the slowest transfer to represent the minimum 
amount of quenching expected. 

Substituting F(quenched) = 0.38   and   QY(TRND-LHCII) = 0.0314   into Eqn (1) 

0.38 =  
𝑥 + (100 − 𝑥) ∙ 0.0314

100
 

38 = 𝑥 + 3.14 − 0.0314𝑥 

34.86 = 0.9686𝑥 

𝑥 =
34.86

0.9686
= 36 

 

 
In summary, we find that approximately 64% of nanodiscs contain both LHCII and TR and 
36% of nanodiscs contain TR without LHCII.  

 
Calculation 2 – Estimating the fraction of nanodiscs that contain LHCII from time-
resolved fluorescence data of TR quenching: 

We can also judge the fraction of nanodiscs with and without LHCII from the relative 
amplitudes of the fit for the TR fluorescence decay curve (TCSPC), if we assume that the fast 
component represents the nanodiscs containing both LHCII and TR and the slow component 
represents the nanodiscs where LHCII is absent (main text Fig. 2F and Table 1). From Table 1 
we can see that the amplitude of the slow-decaying component (A2) for the TR-LHCII (Em1) 
is 41.2%, in good agreement with the estimate from steady-state data. In other words, the 
TCSPC data suggests that approximately 59% of nanodiscs contain both LHCII and TR and 
41% of nanodiscs contain TR without LHCII.  

 

 
Calculation 3 – Estimating the energy transfer efficiency for a hypothetical population of 
(pure) LHCII-TR nanodiscs: 

Considering only the fast component of TR decay (𝜏ଵ of 0.32 ns with A1 = 58.8%, see main 
text Table 1), which we interpret as representing the TR lifetime in LHCII-TR nanodiscs and 
58.5 % of the population, we can estimate the TR-to-LHCII transfer efficiency for this sub-
population as: 

𝐸𝑇𝐸 = 1 −
𝜏ଵ

𝜏଴
  

where 𝜏଴ is the lifetime of isolated TR = 3.94 ns and 𝜏ଵ = 0.32 ns. 

Thus, the ETE for a population of pure TR-LHCII-nanodiscs is estimated as 91.9%. 
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2.11 Considering inter-TR energy transfer in nanodiscs  

Estimation of nanodisc size: 

If we assume that nanodiscs have a composition of 1500:20:1 DOPC:TR:LHCII (single LHCII 
nanodisc), we have 1520 lipid molecules in each lipid bilayer in a single nanodisc, therefore 
760 lipids in each leaflet of the bilayer (including an average of 10 TR in each leaflet). 

If area/lipid = 0.66 nm2  [20]  

Total lipid area: 760 x 0.66 = 502 nm2 

Area/ LHCII = 52 nm2 [21]  

Total occupied area = 554 nm2 

Leads to: 

𝐴 = 𝜋𝑟ଶ,  𝑟 =  ට
஺

గ
 ,  r = 13.3 nm2 (therefore, nanodisc diameter = 26.6 nm2) 

This estimate generated from the expected molecular ratios and dimensions is in good 
agreement with the expected diameter of ~25-30 nm [13] and our measurements of ~21-28 nm 
from electron microscopy and dynamic light scattering data presented in ESI 2.4. 

 
Estimation of TR-TR separation in lipid nanodiscs 

Using the values estimated above for membrane area as 502 nm2 and 10 TR per leaflet:  

Concentration of TR (in each leaflet) = 10/502 nm2 = 0.0199 TR/ nm2 (or ~2 per 100 nm2)  

Therefore, area occupied per TR = 1/C = 50.2 nm2 

Therefore, average TR-TR molecular separation = 𝑟 =  ට
஺

గ
 =  4.0 nm2 

To summarize: from the ratio of labelled and normal lipids that we used, 1:75 TR-to-DOPC, 
we would expect a distribution of TR-TR centre-to-centre separations with a mean of ~4.0 nm.  

Estimation of TR-TR energy transfer efficiency in nanodiscs  

Using the conventional relationship between Förster radius (R0) and inter-pigment distance 

(R), we can estimate the energy transfer efficiency [18]: 𝐸𝑇𝐸 =  
ோబ

ల

ோబ
లାோల

 

R0 was calculated to be 6.05 nm from the normalised absorption and fluorescence emission 
spectra of Texas Red using the online tool [22, 23] and the TR-TR separation distance of 4.0 
nm was used (as estimated above). 

Thus, we estimate energy transfer efficiency to be ~92% based on inter-TR separation of 4.0 
nm and an R0 of 6.05 nm:  

𝐸𝑇𝐸 =  
𝑅଴

଺

𝑅଴
଺ + 𝑅଺

 ×  100% = 92.2% 
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2.12 Enhancement of overall system’s absorption due to the addition of TR  
In order to calculate the effective enhancement of the system's absorption due to the addition 
of Texas Red, the fluorescence excitation spectrum of LHCII nanodiscs and TR-LHCII 
nanodiscs were compared. The excitation spectra were used as they represent the “effective” 
absorption of the system, i.e., where the excitation energy is successfully transferred to the 
LHCII complex (leading to the fluorescence observed), as opposed to the simple steady-state 
absorption spectrum which would include “ineffective” TR molecules that were not actually 
coupled energetically to LHCII.  Spectra were normalized to 1.0 at the Chl a Qy peak to allow 
comparison relative to the starting amount of LHCII in different samples.  

As shown below, spectra were plotted in Origin Pro graphing software and the integration 
function was used to quantify the area under the spectrum in the specified range in each case: 

 

Fig S8. Enhancement of LHCII excitation spectra (A) LHCII excitation spectra (emission 
collected at 680 nm) normalized to 1.0 at Chl a Qy peak for LHCII nanodisc and TR-LHCII 
nanodisc samples. (B) zoomed in the region of (A) showing the “green gap” of minimal natural 
LHCII absorption between 525-625 nm. 

 

Full range: 
LHCII nanodiscs effective absorption area in the visible range 380-680nm (green area in ESI 
Fig S8A) = 208.4 AU 

TR-LHCII nanodiscs effective absorption area in the visible range 380-680nm (red area in ESI 
Fig S8A) = 270.3 AU 

Absorption strength (enhanced vs. original) = 270.3/208.4 = 1.297 

The enhancement of LHCII in nanodiscs over the entire visible range is estimated as 29.7% 
due to the presence of TR. 

Green gap: 
LHCII nanodiscs effective absorption area in the “green gap” 525-625nm (green area in ESI 
Fig S8B) = 19.4 AU 

TR-LHCII nanodiscs effective absorption area in the “green gap” 525-625nm (red area in ESI 
Fig S8B) = 70.2 AU 

Absorption strength (enhanced vs. original) = 70.2/19.4 = 3.62 

The enhancement of LHCII in nanodiscs focussing on the “green gap” spectral range is 262% 
due to the presence of TR.   
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2.13 Enhancement of overall system’s absorption due to the addition of TR considering 
the AM1.5 solar spectrum 
 
In order to calculate the effective enhancement of the LH system’s absorption due to the 
addition of Texas Red, the fluorescence excitation spectrum of LHCII nanodiscs and TR-
LHCII nanodiscs was analysed (Fig. S9(A)), similarly to in ESI 2.12. Furthermore, to consider 
the system’s absorption in relation to a real-life environment we normalised this excitation 
spectrum to the standard AM1.5 solar spectrum (Fig. S9(C)), available online from the global 
standards organization ASTM International [34]. In other words, the fluorescence excitation 
spectra were multiplied by the AM1.5 solar spectrum (Fig. S9(B)). The effective absorption 
area of these normalised spectra was then compared (with TR versus without TR). Full details 
are given below. 

Full range: 
As shown below, spectra were plotted in Origin Pro graphing software and the integration 
function was used to quantify the area under the spectrum in the specified range in each case: 

 

Fig. S9. (A) LHCII excitation spectra (emission collected at 680 nm) normalized to 1.0 at Chl 
a Qy peak, subsequently multiplied by the AM1.5 solar spectrum, for LHCII nanodisc and TR-
LHCII nanodisc samples. (B) LHCII excitation spectra for LHCII nanodisc and TR-LHCII 
nanodisc samples normalised to the AM1.5 Solar spectrum. (C) AM1.5 Solar Spectrum. 

 

LHCII nanodisc effective absorption area in the visible range 380-680 nm (green area in ESI 
Fig S9) =  277.9 AU 

TR-LHCII nanodiscs effective absorption area in the visible range 380-680 nm (red area in 
ESI Fig S9)  = 368.6 AU 
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Absorption strength (enhanced vs. original) = 368.6/277.9 = 1.326 

In summary, the enhancement of LHCII in nanodiscs over the entire measurement range (the 
visible spectral range) was 32.6% due to the presence of TR when taking the AM1.5 solar 
spectrum into account. This is a higher enhancement than when all excitation wavelengths are 
considered equally due to the high irradiance of the AM1.5 solar spectra in the region of strong 
TR absorption. 

 

 

2.14. Experimental condition for time-resolved fluorescence (TRFS) measurements.   
  

  
  

Fig. S10.  Excitation spectrum (Exc) and the two emission filter ranges (Em1 and Em2) 
employed in the TRFS measurements. The steady-state absorption (solid lines) and 
fluorescence (dashed lines) spectra of the samples are overlaid.   
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2.15. Emission wavelength independence of TR and LHCII fluorescence dynamics. 
  
  

  
  

Fig. S11. Emission wavelength independence of TR and LHCII fluorescence decay. Top 
panels show the TRFS of (A) TR liposomes and (B) LHCII nanodiscs. Bottom panels show 
slices of the TRFS at selected emission wavelengths (indicated with dashed lines) normalized 
to the maximum photon count of each trace, illustrating that the fluorescence decay profiles 
are wavelength-independent.  
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2.16. Transient Absorption (TA) spectroscopy pump and probe properties and excitation 
power dependence.  
  

  
  

Fig. S12. Experimental conditions for TA measurements. (A) Pump (blue) and probe (pink) 
spectra overlaid with the steady-state absorption spectra of the samples. (B) Autocorrelation 
trace of the pump pulse. See supplementary Materials and Methods section 1.5. 
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2.17. Global analysis of the TA data and decay-associated difference spectra. 
 

  
  

Fig. S13. Kinetics obtained from the TA spectroscopy data for TR liposomes and 
LHCII nanodiscs. Representative fit trace and the global analysis decay-associated difference 
spectrum (DADS) for TR liposomes (A, B) and LHCII nanodiscs (C, D). Insets in (A) and (C) 
show zoomed-in fit traces for the initial 70 ps. The probe wavelength of each fit trace and time 
constant extracted from the fit are indicated in each panel.  
  
  
 
 

  
  

Fig. S14. Global analysis decay-associated difference spectra (DADS) of TR-LHCII nanodiscs 
sample. The time constant associated with each DADS is shown in the corresponding color. 
These correlate to the representative fit trace shown in main text Fig. 4A.  The growth of the 
SE in DADS1 is less prominent than that for DADS2 due to the larger SE decay from vibronic 
shoulder of TR in that region at early times.   
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2.18 Global analysis of TA data for TR liposomes using a two-component fit 
 

 

Fig. S15. Global analysis decay-associated difference spectra (DADS, left) and evolution-
associated difference spectra (EADS, right) of TR liposomes using a two-component fit. The 
time constant associated with each DADS/EADS is shown in the corresponding colour. 
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2.19 Global analysis of TA data for TR-LHCII and LHCII only nanodiscs with and 
without 3.7 ps component 

To illustrate that the 3.7 ps component is related to energy transfer, we fit the acceptor transients 
(675 nm) with and without the 3.7 ps component (initial 10 ps). As shown in Fig. S16 (panel 
(A)), the fit fails for the TR-LHCII nanodisc sample in the absence of a 3.7 ps component, 
confirming that a fast rise component is present in the data. In (B) we show that the transient 
of the LHCII-only nanodisc control cannot be fit with a 3.7 ps component, further corroborating 
that the 3.7 ps component observed arises from TR-to-LHCII energy transfer.  
 

 
Figure S16. Comparison of single-wavelength fit traces. (A) TR-LHCII nanodisc probed at 
675 nm. The left panel shows a triexponential fit (original fit shown in the main text Fig. 3H 
blue trace) with two rise components of 3.7 ps and 128 ps, the two timescales of energy transfer 
extracted from global analysis, and right panel shows a biexponential fit with only the 128 ps 
rise component present. (B) LHCII-only nanodisc probed at 675 nm. The left panel shows the 
best fit with all parameters freely varied (original fit shown in the main text Fig. 3H green 
trace), where a 0.8 ps rise component was extracted. The right panel shows a fit where the rise 
time constant was fixed at 3.7 ps. From the quality of the fits and structure of the residuals, we 
conclude that the 3.7 ps component corresponds to a fast TR-to-LHCII energy transfer step, 
not energy transfer among the TR molecules nor internal relaxation processes present in LHCII. 
All traces are normalized such that the maximum of each fit curve is –1. 
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2.20 Global analysis of TA data for TR-LHCII nanodiscs using a branched kinetic model 

 

Fig. S17: (A) Branched kinetic model describing the energy transfer from the TR to the LHCII 
observed in the TA spectra. (B) Species-associated decay spectra for the three time constants 
extracted from target analysis and (C) the corresponding decay-associated decay spectra. 

 

 

   
Figure S18: Comparison of the fits to the fluorescence decay of TR-LHCII nanodiscs when 
TR emission wavelength range was monitored (purple trace in Fig. 2F in the main text). (A) 
shows the fit result and residual when all parameters were freely varied without any constraints, 
as shown in Fig. 2F and Table 1, and (B) shows the fit result and residual when the first 
component was fixed as 0.239 ns, the time constant extracted by analysing the TA data using 
the branched model. 
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2.21. Expanded description of Molecular Dynamics (MD) model  
The CHARMM-GUI web based interface was used to set up the MD simulation [24].  The 
membrane consists of 250 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules each 
layer, with 37 TIP3P explicit water molecules above/under each lipid molecule. The membrane 
was put in a rectangular periodic boundary box with a width and breadth of 125 Å and pre-
equilibrated for the protein insertion. A counter ion set of Na+ and CL- was selected to 
neutralize the system, the final concentration was set to 0.1M to match experimental conditions. 
The system was first minimized under standard procedures and equilibrated over 20 ps 
substance volume temperature (NVT) and substance pressure temperature NPT ensembles 
each, an extra 20 ns NPT production run was conducted to let the system plateau. 
  
 

2.22. Lipid diffusion constant calculation from Molecular Dynamics (MD) data.  
The lipid diffusion constants can be initially derived from the MD trajectories using embedded 
software CPPTRAJ in AMBER. By definition, the one-dimensional diffusion coefficient D can 
be represented as:  

𝝏𝝋

𝝏𝒕
= 𝑫

𝝏
𝟐

𝝋

𝝏
𝟐

𝒙𝟐
 

  
where the φ is the concentration in dimensions of mol/m3, i.e. a function that depends on both 
location and time. D is the diffusion coefficient in dimensions of m2/s. This can be calculated 
using the Einstein relation:  

𝟐𝒏𝑫 = 𝐥𝐢𝐦
𝒕→ஶ

𝑴𝑺𝑫

𝒕
 

where n is the number of dimensions, i.e., in a 2D space we have n=2 whereas in single 
dimension we have n=1. The MSD is the mean square displacement of the selected residues 
over the trajectory. The trajectories are first unwrapped in order to obtain the continuous path 
for the selected residues, otherwise the periodic boundary condition may cause severe error. 
Due to the fact that the diffusion coefficient is calculated from the initial position given by the 
trajectory, the result for small numbers of atoms will be inherently stochastic for small number 
of sampled atoms. To deal with this we averaged the result over the 5 MD trajectories and used 
all the selected residues in the system to calculate its diffusion coefficient. The result is shown 
below in Table S3:   
  
 Table S3. Diffusion constants for the common lipid 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) and Texas Red calculated in MD simulations  
 
Lipid type Diffusion constant calculated  

from our MD data (µm2/s)  
Literature value  (µm2/s)  
from [25] 

DOPC  8.4  5 to 14  
Texas Red DHPE  4.5   N/A 
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2.23. Pigment cofactor positions in the LHCII monomer from MD data.  
The 50-ns-long simulation did not reveal any significant displacement of the pigment cofactors 
in the LHCII monomer (as shown in Fig. S19A-C). The pigments generally remain their initial 
position in the crystal structure adopted from PDB structure 1RWT. The clusters of 
chlorophylls (Chl) on the lumen side are less efficient in terms of energy transfer compared to 
the stromal side, as they are more separated in space. The subtle changes to pigment positions 
which do occur are briefly discussed below.    
  
5 out of the 6 Chl b molecules surround the helix C at the interface between the monomers, 
with the remaining Chl b 608 left of the lutein pair, as shown in Fig. S19D. This region is 
proposed to be critical in terms of energy transfer between the monomers. Now considering 
the Chl a molecules, the “terminal emitter” generally remains in its initial position, with Chl a 
611 slightly displaced towards Chl b 608. This movement is a result of monomerizing the 
LHCII trimer which leave Chlb601 highly lipid exposed. It has been shown that 
monomerization of LHCII does lead to significant changes in the Chl b region of the absorption 
spectrum, implying changes in pigment position and orientation [26]. In previous MD studies 
this movement can be prevent by imposing positional constraints during the equilibration phase 
[27]. However, we omitted this step as Chlb601 was not one of the pigments considered when 
we calculated couplings. Moreover, its movement had a negligible effect on the pigments that 
we did consider. Fig. S19E shows the positions of the luteins and Chl a molecules.  
  

 

             D      E 

 
  
Fig. S19. Various views of the LHCII monomer from our MD simulations. (A) The top view 
(stromal side), (B) bottom view (luminal side) and (C) the side view of the pigment 
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representation. Chlorophyll a coloured in light green; chlorophyll b coloured in dark 
green; luteins coloured in orange; neoxanthin and violaxanthin coloured in magenta and grey, 
respectively. The chlorophyll tails are hidden for clarity. (D) Representation of chlorophyll b 
in the LHCII monomer (top view). (E) Representation of chlorophyll a molecules and the 
lutein molecules in the LHCII monomer (side view).     
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2.24. Calculations for the rate of energy transfer and Förster radius.  
The timescale for energy transfer from TR to the LHCII monomer is characterized by the 
following rate constant: 

𝒌𝑳𝑯𝑪𝑰𝑰←𝑻𝑹 = ෍ 𝒌𝒎←𝑻𝑹

𝒊

  (𝟏)    

where 𝑘௠←்ோ represents the rate of transfer to individual states within LHCII. Formally these 
states should be delocalized exciton states that arise due to couplings between the chlorophylls 
(Chls). However, it has been shown that these couplings result in minimal peak shifts and 
redistribution of oscillator strength relative to the uncoupled state [28]. Therefore, in our 
approximate model, 𝑘௠←்ோ represent pigment-to-pigment transfer rates. The summation 
should run over all Chl a and Chl b pigments inside the monomer. However, transfer to the 
inner pigments is likely to be significantly reduced due to screening by the protein and outer 
pigments. We therefore assume that transfer occurs predominantly to the pigments close to the 
membrane-exposed part of LHCII. The validity of this assumption may be reduced for very 
close separations between TR and LHCII. We note that energy transfer to the Chls can, in 
principle, occur through one of two transitions, either the strongly absorbing 𝑄௬ or the higher-
energy but less absorbing 𝑄௫ transition. The total pigment-to-pigment rate will be the sum of 
these two pathways, 

𝒌𝒎←𝑻𝑹 = 𝒌𝑸𝒚←𝑻𝑹 + 𝒌𝑸𝒙←𝑻𝑹    (𝟐)   

The individual rates are calculated according to the Fermi Golden Rule, 

𝒌𝑸𝒙/𝒚←𝑻𝑹 = 𝟐𝝅ห𝑱𝒎,𝑻𝑹ห
𝟐

න 𝒅𝝎 𝑭𝑻𝑹(𝝎)𝑨𝑸𝒙/𝒚
(𝝎)

ஶ

ିஶ

  (𝟑)    

where 𝐽ொೣ/೤,்ோ is the resonance coupling between the electronic transitions of the donor (TR) 

and acceptor (Chl), 𝐹்ோ(𝜔) is the fluorescence spectrum of the donor and 𝐴ொೣ/೤
(𝜔) is the 

absorption spectrum of the acceptor (with all spectra in the frequency domain).  
 
The resonance coupling is the Coulomb interaction between electronic transition densities on 
the two molecules. So long as the separation between pigments is larger than the length-scale 
of each molecule then these transition densities can be approximated as point transition dipole 
moments located at their centre of charge. For the Chls this is approximately at the central 
magnesium of the tetrapyrrole head while for TR this is assumed to be at the middle of the 
central ring [29]. The dipole-dipole coupling is, 
   

𝑱𝑸𝒙/𝒚,𝑻𝑹 ≈
𝜿𝑸𝒙/𝒚,𝑻𝑹 ቚ𝝁𝑸𝒙/𝒚

ቚ |𝝁𝑻𝑹|

𝟒𝝅𝜺𝟎 ቚ𝑹𝑸𝒙/𝒚,𝑻𝑹ቚ
𝟑   (𝟒)    

where ቚ𝜇ொೣ/೤
ቚ and |𝜇்ோ| are the magnitudes of the two transition dipole moments, 𝑅௠,்ோ is their 

relative separation distance and 𝜅௠,்ோ describes their relative orientation, 

𝜅௠,்ோ = 𝛍ෝொೣ/೤
∙ 𝛍ෝ்ோ − 3 ቆ𝛍ෝொೣ

೤

∙ 𝐑෡ ொೣ
೤

,்ோቇ ቆ𝛍ෝ்ோ ∙ 𝐑෡ ொೣ
೤

,்ோቇ (𝟓)     

where 𝛍ෝொೣ/೤
, 𝛍ෝ்ோ and 𝐑෡ ௠,்ோ are unit vectors.  

 
The pigment-to-pigment separation distances are read directly from the uncorrelated snapshots 
of the MD trajectories. The transition dipoles for the 𝑄௬ transitions of Chl a and Chl b are given 
lengths of 4.5 Debye and 3.6 Debye, respectively, and they are assumed to approximately lie 
along a line connecting two opposite nitrogen atoms in the tetrapyrrole ring [30]. The 𝑄௫ 
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dipoles are assumed to be 0.67 the length of the 𝑄௬ dipoles and lie in an orthogonal direction 
in the tetrapyrrole plane [31]. The dipole moment of TR has been reported to lie along the 5-
ring chromophore [29]. We assumed a representative dipole length of 10 Debye to be consistent 
with the 7-13 Debye values reported for various rhodamine derivatives [32]. 
 
To evaluate the spectral overlap integral in Eqn. (3) we need spectra for both TR and the 𝑄௫/௬ 
transitions of Chl a and b. For TR we simply use the experimental fluorescence spectrum (see 
Fig. S20, light blue). This consists of a single broad peak with an almost featureless vibronic 
satellite. It is not straightforward to extract the 𝑄௫ and 𝑄௬ contributions of an experimentally-
measured absorption spectrum of Chl a or Chl b. Therefore, we instead use a well-known ansatz 
function to describe each of them [33]. The absorption spectrum in the frequency domain is the 
Fourier transform of the first-order response function, 

𝑨𝑸𝒙/𝒚
(𝒕) = 𝐞𝐱𝐩 ቀ−𝒊𝝎𝑸𝒙/𝒚

𝒕 − 𝒈𝑸𝒙/𝒚
(𝒕)ቁ    (𝟔)   

where 𝜔ொೣ/೤
 is the electronic transition frequency (i.e., the position of the 0-0 absorption peak) 

and 𝑔ொೣ/೤
(𝑡) is the complex line-broadening function. The latter characterizes the coupling 

between the electronic transition and the nuclear vibrations of the pigment (which define the 
broadening and vibronic structure of the spectrum). These nuclear vibrations are stochastic in 
nature and enter the line-broadening function by their spectral density, 𝐶ொೣ/೤

ᇱᇱ (𝜔), 

𝒈𝑸𝒙/𝒚
(𝒕) = න

𝒅𝝎

𝝅𝝎𝟐
𝑪𝑸𝒙/𝒚

ᇱᇱ (𝝎) ൤(𝟏 − 𝐜𝐨𝐬(𝝎𝒕)) 𝐜𝐨𝐭𝐡 ൬
ℏ𝝎

𝟐𝒌𝑩𝑻
൰ + 𝒊(𝐬𝐢𝐧(𝝎𝒕) − 𝝎𝒕)൨

ஶ

𝟎

 (𝟕)      

The spectral density is essentially the spectrum of molecular vibrational frequencies, 𝜔, 
weighted by their relative coupling to the electronic transition energy. We use the familiar over-
damped Brownian oscillator ansatz (also known as the Drude model), 

𝑪𝑸𝒙/𝒚

ᇱᇱ (𝝎) = 𝟐𝝀
𝜸𝝎

𝝎𝟐 + 𝜸𝟐
     (𝟖) 

where 𝜆 is the vibrational reorganization energy associated with the transition and 𝛾 is the 
damping frequency of the vibrations. We use standard values of 𝜆 ~ 40 cmିଵ and 𝛾ିଵ =
53 𝑓𝑠 [9]. We also assume that 𝜔ொ೤

= 14,900 cmିଵ and 15,300 cmିଵ for Chl a and b 

respectively with 𝜔ொೣ
= 𝜔ொ೤

+ 1000 cmିଵ for both. These calculations yield estimated line 

shapes for the 𝑄௫ and 𝑄௬ transitions of Chl a and b shown in Fig. S20 (orange, grey, yellow, 
dark blue).   These line shapes can be combined at a  𝑄௫/ 𝑄௬ ratio of 0.45 to reproduce the 
LHCII absorption spectra as shown in Fig. S21.  
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Fig. S20. The normalized line shapes for Chl a and b are shown with the normalized TR 
fluorescence spectrum. The relative intensities of the actual transitions are captured within the 
resonance couplings. Therefore, the relative heights of each peak shown here have no physical 
meaning beyond being determined by the normalization condition. The TR spectrum is 
experimental data acquired on a sample of TR liposomes (a fluorescence emission spectrum 
with excitation at 560 nm, converted from being intensity as a function of wavelength to 
intensity as a function of energy). 
 

 

Figure S21: Reconstruction of the LHCII absorption spectrum from 𝑄௫ and 𝑄௬ line shapes. 
The experimentally-measured spectrum for LHCII is shown as a solid line, the reconstructed 
spectrum with varying 𝑄௫/ 𝑄௬ ratios are shown with dashed lines (ratios as indicated in the 
figure legend).  
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2.25. Transition dipole moment for Texas Red.  
During the process calculating the coupling interaction between the chlorophyll and the Texas 
Red molecules, we took the approximation that this can be simplified to a point-dipole problem. 
Here we define the Chl a Qy/Qx transition dipole moments as a vector from its centrally bound 
Mg atom to the NB/NC atoms respectively (black arrow and opaque arrow in Fig. S22). Note 
that the real dipole moment of the Qy transition originates from the Mg atom to the NB atom 
but slightly deviated towards the NC atom. This is believed to have little effect given the 
distance between the pair and the fluctuations along the trajectory. We took the convenience 
that the Qx transition dipole moment is roughly orthogonal to the Qy and thus pointing to the 
NC atom. The transition dipole strength of Chl a was set to 4.5 Debye. The same direction of 
the dipole moments was applied to Chl b molecules, with the strength of 3.8 Debye. For the 
Texas Red molecule, the transition dipole moment was approximated from the middle point of 
C20 and C24 to the middle point of C31 and C25 (shown in black arrow in the figure below). 
The dipole strength is set to 10 Debye.  
  

 
Fig. S22. Transition dipole moment of the Texas Red (left) and chlorophyll a molecules (right). 
Approximated dipole moments are represented as arrows in figure. 
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