Electronic Supplementary Information.

Charge transfer dynamic in van der waals heterojunctions formed by thiophene-based semiconductor polymer and exfoliated franckeite investigated from resonantly core excited electron.

Yunier Garcia-Basabe,^{a,*} David Steinberg,^b Lara M Daminelli,^a Cesar D. Mendoza,^c E. A. Thoroh de Souza,^b Flavio C. Vicentin,^d and Dunieskys G. Larrudé^{b,*}

^a Universidade Federal da Integração Latino-Americana, UNILA, 85867-970, Foz do Iguaçu, Brazil

^bMackGraphe-Graphene and Nanomaterial Research Center, Mackenzie Presbyterian University, 01302-907, São Paulo, Brazil

^c Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, Brazil

^d Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, Sao Paulo, Brazil

* Corresponding author's e-mail address: <u>yunier.basabe@unila.edu.br</u>

Tel.: +55-45-3576-2113; Fax: +55-21-3938-7265

Contents:

Fig. S1 A) Raman spectra of P3HT thin-film polymer, exfoliated franckeite and P3HT-DBT/Fr heterojunction. B) Raman spectra of PFO-DBT thin-film polymer, exfoliated franckeite and PFO-DBT/Fr heterojunction. C) and D) AFM topographic images of the exfoliated franckeite flakes.

Fig. S2 S1s high-resolution XPS spectra of exfoliated franckeite, PFO-DBT/SiO₂ and PFO-DBT/Fr thin films.

Fig. S3 Non-resonant Auger spectrum of PFO-DBT copolymer, measured at an X-ray energy of hv=2500 eV (above the ionization potential).

Table S1. Charge transfer times (τ_{CT}) in femtoseconds (fs) for PFO-DBT/SiO₂ obtained using the sum form (SGL) and product form Pseudo-Voigt profile functions

Table S2. Charge transfer times (τ_{CT}) in femtoseconds (fs) for PFO-DBT/Fr obtained using the sum (SGL) and product forms of Pseudo-Voigt profile functions

Fig. S1. A) Raman spectra of P3HT thin-film polymer, exfoliated franckeite and P3HT-DBT/Fr heterojunction. B) Raman spectra of PFO-DBT thin-film polymer, exfoliated franckeite and PFO-DBT/Fr heterojunction. C) and D) AFM topographic images of the exfoliated franckeite flakes.

Fig.S2 S1s high-resolution XPS spectra of exfoliated franckeite, $PFO-DBT/SiO_2$ and PFO-DBT/Fr thin films.

Fig. S3 Non-resonant Auger spectrum of PFO-DBT and P3HT copolymer and exfoliated franckeite measured at an X-ray energy of hv=2500 eV (above the ionization potential).

Electronic Transitions	τ _{cτ} (fs)	
	GL	SGL
-	>12.7	>.12.7
B1 π*(S-N)	8.33 (3)	8.80 (4)
T1 $\pi^*(S-C)$	2.69 (5)	2.63 (4)
B2 σ (δ-N) T2 σ*(δ-C)	1.04 (4)	1.10 (6)

Table S1. Charge transfer times (τ_{CT}) in femtoseconds (fs) for PFO-DBT/SiO₂ obtained using the sum form (SGL) and product form Pseudo-Voigt profile functions.

 $\overline{\tau_{CT}}$ standard deviation values are shown in parentheses.

Electronic Transitions	τ _{cτ} (fs)	
	GL	SGL
B1 π*(S-N)	>0.127	>.12.7
T1 π*(S-C)	0.158 (4)	0.180 (4)
B2 σ^* (S-N)	2.96 (4)	3.05 (4)
T2 σ*(S-C)	1.81 (6)	2.02 (7)

Table S2. Charge transfer times (τ_{CT}) in femtoseconds (fs) for PFO-DBT/Fr obtained using the sum (SGL) and product forms of Pseudo-Voigt profile functions.