Supporting Information for

Ferromagnetic Dirac Half-Metallicity in Transition Metal-Embedded

Honeycomb Borophene

Yanxia Wang, Xue Jiang*, Yi Wang*, and Jijun Zhao

Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China

Figure S1. (a) Possible adsorption sites (b = bridge, t = top, h = hole) of transition metal atoms on the honeycomb borophene surface. (b) Energy profile for the three corresponding TMB₂ structures, also showing the structures corresponding to the *t*, *b*, and *h* configurations.

Figure S2. Phonon dispersion spectrum of MnB_2 monolayer.

Figure S3. Top and side views of snapshots extracted from the MD simulations of 2D CrB_2 monolayers at the temperature of 500 K at the end of 10 ps, along with time evolutions of total energy.

Figure S4. The other potential 2D CrB_2 allotropes were obtain in our global search. The CrB_2 -1 is a monoclinic lattice in which the Cr atoms are sandwiched by the B atoms. The Cr atoms are six-coordinate with B atoms. The CrB_2 -2 is an orthorhombic lattice and the Cr atoms are six-coordinate with B atoms. The CrB_2 -3 is a monoclinic lattice. The Cr atoms are sandwiched by the B atoms and eight-coordinate with B atoms. The CrB_2 -4 is a tetragonal lattice and the Cr atoms are four-coordinate with B atoms.

Figure S5. (a) Electron localization function (ELF) isosurface plotted at 0.09 e/Bohr³ and (b) ELF map of CrB₂ monolayer in the plane perpendicular to the *z* direction. Red and blue colors correspond to the highest (1) and lowest (0) ELF values, respectively. (c) Differential charge density (isovalue: 0.01 e/Bohr³) of monolayer MnB₂. Yellow and blue colors denote charge accumulation and depletion, respectively.

Table S1. Calculated energy (ΔE , eV/TMB₂) of magnetic states relative to that of nonmagnetic states: $\Delta E = E_{\text{magnetic}} - E_{\text{nonmagnetic}}$. A positive ΔE value indicates that the magnetic state has lower energy.

ТМ	Ti	V	Cr	Mn	Fe	Co	Ni
$\Delta E (eV)$	0	0	-0.17	-0.012	0	0	0

	$E_{\text{Total}} \left(\text{eV} \right)$	$\Delta E (\mathrm{meV})$	
FM	-127.937	0	
AFM1	-127.710	227	
AFM2	-127.746	191	
AFM3	-127.764	173	

Table S2. Calculated energies of ferromagnetic (E_{FM}) and antiferromagnetic (E_{AFM}) states and energy differences (ΔE) between E_{AFM} and E_{FM} for Cr₆B₁₂ formula unit.

	d_{z^2}	d_{xy}	$d_{x^2-y^2}$	d_{xz}	d_{yz}	Total
Spin up (e)	0.87	0.68	0.67	0.50	0.54	3.26
Spin down (e)	0.10	0.29	0.29	0.24	0.18	1.10
Net magnetic	0.77	0.39	0.38	0.26	0.36	2 16
moment ($\mu_{\rm B}$)	0.77		0.58	0.20	0.50	2.10

Table S3. *d*-projected density of states and net magnetic moment of Cr atoms.

S1. The Hamiltonian of the classical Heisenberg model can be written as:

$$H = -\sum_{i,j} J_1 M_i M_j - \sum_{k,l} J_2 M_k M_l - \sum_{p,q} J_3 M_p M_q$$

where M_i is the spin magnetic moment per Cr atom, J_1 , J_2 , and J_3 are the first, second, and third nearest-neighbor exchange parameters, respectively. M (=2.16 μ_B per Cr atom) is the spin magnetic moment for CrB₂ monolayer. The exchange parameters J_1 , J_2 , and J_3 of the four magnetic configurations can be estimated by the following equations:

$$\begin{split} E(FM) &= -\left(18J_1 + 18J_2 + 18J_3\right)M^2 \\ E(AFM1) &= -\left(-2J_1 - 6J_2 + 2J_3\right)M^2 \\ E(AFM2) &= -\left(-6J_1 + 2J_2 + 2J_3\right)M^2 \\ E(AFM3) &= -\left(-6J_1 - 6J_2 + 18J_3\right)M^2 \\ \Delta E_1 &= E(AFM1) - E(FM) = (20J_1 + 24J_2 + 16J_3)M^2 \\ \Delta E_2 &= E(AFM2) - E(FM) = (24J_1 + 16J_2 + 16J_3)M^2 \\ \Delta E_3 &= E(AFM3) - E(FM) = (24J_1 + 24J_2)M^2 \\ J_1 &= \frac{\Delta E_3 - 3(\Delta E_1 - \Delta E_2)}{48M^2} \\ J_2 &= \frac{\Delta E_3 + 3(\Delta E_1 - \Delta E_2)}{48M^2} \\ J_3 &= \frac{3\Delta E_1 + 3\Delta E_2 - 5\Delta E_3}{96M^2} \end{split}$$