Electronic Supplementary Information for:

Sustainable Electrode Material for High-Energy Supercapacitor: Biomass-Derived Graphene-Like Porous Carbon with Three Dimensional Hierarchically Ordered Ion Highways

Ceren Karaman¹, Onur Karaman², Necip Atar³, Mehmet Lütfi Yola^{4*}

¹Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, Turkey

²*Akdeniz University, Vocational School of Health Services, Department of Medical Imaging Techniques, Antalya, Turkey.*

³*Pamukkale University, Faculty of Engineering, Department of Chemical Engineering, Denizli, Turkey.*

⁴Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.

Number of pages: 8

Number of tables: 1

Number of figures: 4

*Corresponding author:

e-mail: mlutfi.yola@hku.edu.tr

Tel.: +90 342 211 8080 Fax: +90 342 211 8081

Address: Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.

Assessment of Electrochemical Performance

The specific capacitance, C_{cv} (F.g⁻¹) value for samples from CV curves was calculated by using the Eq. 1:

$$C_{cv} = \frac{q_a + |q_c|}{m.\,\Delta V} \tag{1}$$

where, q_a , q_c , m and ΔV are the anodic and cathodic voltammetric charges on positive and negative sweeps, the weight of active material and the potential range of cyclic voltammetry, respectively ¹.

The specific capacitance C_{GCD} (F.g⁻¹) of the symmetrical supercapacitor cell was calculated from GCD curve by Eq.2:

$$C_{GCD} = \frac{I t_d}{m \,\Delta V} \tag{2}$$

where *I* is the constant current (A), *m* is the total mass of active material (g), t_d is the discharge time and ΔV is the potential range excluding the voltage drop (V_{drop}) at the beginning of the discharge ¹.

Coloumbic efficiency (η) was calculated from GCD curve by Eq.3:

$$\eta = \frac{t_d}{t_c} \times 100 \tag{3}$$

where t_d and t_c are the discharge and charge time (s), respectively.

The energy density, $E(W.h.kg^{-1})$, was calculated using the Eq. (4);

$$E = \frac{1}{7.2} C_{GCD} \Delta V^2 \tag{4}$$

The power density, $P(W.kg^{-1})$, was estimated using the Eq. (5);

$$P = \frac{E}{t_d} \tag{5}$$

where t_d (h) is the discharge time at a constant current density.

The capacitance retention was calculated according to Eq. (6);

Capacitance Retention (%) =
$$\frac{C_i}{C_1} \times 100$$
 (6)

where C_i and C_I are the specific capacitances of the *i*th and 1st GCD cycles, respectively ^{1,2}.

Supplementary Tables

Sample	C (%)	H (%)	N (%)	S (%)	$(O + ash)^*$
DOP	50.40	6.88	0.08	0.02	40.64

Table S1. Elemental analysis results of DOP sample

* The oxygen content is calculated by difference

and WIS electrolytes

Sample	Current	Specific	E (W.h/kg)	D	Coulombic
	Density	Capacitance			Efficiency
	(A/g)	(F/g)		(w/kg)	Efficiency
12.0 m NaNO ₃	0.5	70.0	51.43	575.00	99.39
	1.0	64.0	47.02	1150.00	93.75
	2.0	59.0	43.35	1776.38	88.24
	5.0	54.0	39.68	5750.00	82.50
	10.0	49.9	36.66	11507.02	81.17
1.0 M Na ₂ SO ₄	0.5	59.0	36.14	445.06	97.49
	1.0	49.0	30.01	899.91	91.53
	2.0	44.0	26.95	1796.87	88.89
	5.0	41.0	25.11	4677.25	82.86
	10.0	38.0	23.28	9146.56	80.00

Supplementary Figures and Captions

Fig S1. FTIR spectra of DOP and GPC-*x* samples

Fig. S2 Cyclic voltammograms of **(A)** GPC-0.0, **(B)** GPC-1.0, **(C)** GPC-2.0, and **(D)** GPC-3.0 at various potential scan rates in 6.0 M KOH electrolyte performed in a three-electrode electrochemical cell

Fig. S3 Galvanostatic charge/discharge curves of **(A)** GPC-0.0, **(B)** GPC-1.0, **(C)** GPC-2.0, and **(D)** GPC-3.0 at various current densities in 6.0 M KOH electrolyte performed in a three-electrode electrochemical cell

Fig S4. The prices of salts and solvents to prepeare various water-in-salt electrolytes ³

References

- C. Karaman, E. Bayram, O. Karaman and Z. Aktas, J Electroanal Chem, 2020, 868, 114197.
- X. D. Bu, L. J. Su, Q. Y. Dou, S. L. Lei and X. B. Yan, *J Mater Chem A*, 2019, 7, 7541-7547
- J. H. Guo, Y. L. Ma, K. Zhao, Y. Wang, B. P. Yang, J. F. Cui and X. B. Yan, Chemelectrochem, 2019, 6, 5433-5438.