Properties of diamane anchored with different groups

Liangbing Ge¹, Huan Liu¹, Jianling Wang^{2,3}, Haoliang Huang^{2,3}, ZhangZhang Cui^{2,3}, Qiuping Huang^{2,3}, Zhengping Fu^{1,2,3*}, Yalin Lu^{1,2, 3*}

¹CAS Key Laboratory of Materials for Energy Conversion, & Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

²*Hefei National Research Center for Physical Sciences at the Microscale, Hefei, Anhui* 230026, P. R. China

³*Anhui Laboratory of Advanced Photon Science and Technology, Hefei 230026, P. R. China*

Email: fuzp@ustc.edu.cn, yllu@ustc.edu.cn

	0 1				
Configurations	Н	F	ОН	Cl	NH ₂
Q 1	d ₁₂ =1.109	d ₁₂ =1.378	d ₁₂ =1.422	d ₁₂ =1.747	d ₁₂ =1.473
3	d ₂₃ =1.538	d ₂₃ =1.559	d ₂₃ =1.580	d ₂₃ =1.670	d ₂₃ =1.624
	d ₃₄ =1.558	d ₃₄ =1.552	d ₃₄ =1.545	d ₃₄ =1.534	d ₃₄ =1.536
5	h ₂₃ =0.488	h ₂₃ =0.503	h ₂₃ =0.414	h ₂₃ =0.508	h ₂₃ =0.518
ahain1	$h_{45} = 0.488$	$h_{45} = 0.503$	$h_{45}=0.414$	$h_{45} = 0.508$	$h_{45} = 0.518$
	d -1 100	d -1 277	d -1 425	d -1 742	d -1 471
2	$u_{12} = 1.109$	$d_{12} = 1.577$	$d_{12} = 1.423$	$d_{12} = 1.743$	$d_{12} = 1.471$
	d ₂₃ =1.536	d ₂₃ =1.558	d ₂₃ =1.561	d ₂₃ =1.668	d ₂₃ =1.623
	$d_{34}=1.586$	$d_{34}=1.570$	$d_{34}=1.562$	$d_{34}=1.562$	d ₃₄ =1.559
5	$h_{23}=0.490$	$h_{23}=0.508$	$h_{23}=0.520$	h ₂₃ =0.515	$h_{23}=0.534$
chair2	h ₄₅ =0.491	$h_{45}=0.508$	$h_{45}=0.520$	h ₄₅ =0.516	$h_{45}=0.525$
	d ₁₂ =1.106	d ₁₂ =1.376	d ₁₂ =1.414		d ₁₂ =1.463
	d ₂₃ =1.563	d ₂₃ =1.630	d ₂₃ =1.706		d ₂₃ =1.789
	d ₃₄ =1.528	$d_{34} = 1.546$	d ₃₄ =1.535		d ₃₄ =1.576
	d ₄₅ =1.573	$d_{45} = 1.574$	$d_{45} = 1.565$		d ₄₅ =1.562
6	h ₃₄ =0.631	h ₃₄ =0.620	$h_{34}=0.622$		h ₃₄ =0.633
boat1	h ₅₆ =0.633	h ₅₆ =0.620	h ₅₆ =0.622		h ₅₆ =0.632
	d ₁₂ =1.098	d ₁₂ =1.361	$d_{12} = 1.378$		
3 2 2	d ₂₃ =1.529	d ₂₃ =1.553	d ₂₃ =1.571		
4	d ₃₄ =1.539	d ₃₄ =1.545	d ₃₄ =1.607		
6	d ₄₅ =1.555	$d_{45} = 1.595$	$d_{45} = 1.595$		
6	h ₃₄ =1.221	h ₃₄ =1.160	$h_{34}=0.988$		
boat2	h ₅₆ =1.221	h ₅₆ =1.160	h ₅₆ =1.153		
	d ₁₂ =1.102	$d_{12}=1.368$	$d_{12}=1.401$		
	d ₂₃ =1.536	d ₂₃ =1.551	d ₂₃ =1.548		
	d ₃₄ =1.581	d ₃₄ =1.640	$d_{34} = 1.722$		
6	d ₄₅ =1.555	$d_{45} = 1.564$	$d_{45} = 1.558$		
6	h ₂₃ =0.693	h ₃₄ =0.682	h ₃₄ =0.685		
boat3	h ₅₆ =0.693	h ₅₆ =0.681	h ₅₆ =0.685		
3 2 1	d ₁₂ =1.100	$d_{12}=1.387$	$d_{12}=1.416$	$d_{12}=1.744$	$d_{12}=1.468$
	d ₂₃ =1.536	d ₂₃ =1.569	d ₂₃ =1.589	d ₂₃ =1.728	d ₂₃ =1.666
	d ₃₄ =1.519	d ₃₄ =1.533	d ₃₄ =1.546	d ₃₄ =1.601	d ₃₄ =1.575
6 9 9	d ₄₅ =1.599	$d_{45} = 1.597$	d ₄₅ =1.591	$d_{45} = 1.579$	d ₄₅ =1.585
6 6	h ₃₄ =1.024	h ₃₄ =0.961	h ₃₄ =0.962	h ₃₄ =0.843	h ₃₄ =0.921
boat4	h ₅₆ =1.024	h ₅₆ =0.961	h ₅₆ =0.962	h ₅₆ =0.843	h ₅₆ =0.932

Table S1 Bond lengths are given in Å for the different phases decorated by five types of the functional group.

Fig. S1 phonon spectrums: (a) chair1-H (4 \diamond 4), (b) chair1-F (4 \diamond 4), (c) chair1-OH (3 \diamond 3), (d) chair1-Cl (4 \diamond 4), (e) chair1-NH₂ (3 \diamond 3).

Fig. S2 phonon spectrums: (a) chair2-H ($3\diamond3$), (b) chair2-F ($3\diamond3$), (c) chair2-OH ($3\diamond3$), (d) chair2-Cl ($5\diamond3$), (e) chair2-NH₂ (3x3).

Fig. S3 phonon spectrums: (a) boat1-H (5 \diamond 3), (b) boat1-F (5 \diamond 3), (c) boat1-OH (5 \diamond 3), (d) boat1-NH₂(5 \diamond 3).

Fig. S4 phonon spectrums: (a) boat2-H ($3\Diamond 3$), (b) boat2-F ($4\Diamond 4$), (c) boat2-OH ($4\Diamond 4$).

Fig. S6 phonon spectrums: (a) boat4-H ($3\diamond3$), (b) boat4-F ($3\diamond3$), (c) boat4-Cl ($3\diamond4$), (d) boat4-OH ($3\diamond4$), (e)boat4-NH₂ ($3\diamond3$).

Fig. S7 phonon spectrums: (a) chair1-H, (b) chair1-OH, (c) chair1-Cl.

Fig. S8 The changes of energy and temperature with time and snapshots: (a) chair2-H, (b) chair2-F, (c) chair2-OH, (d) chair2-Cl, (e) chair2-NH₂.

Fig. S9 The changes of energy and temperature with time and snapshots: (a) boat1-H, (b) boat1-F, (c) boat1OH, (d) boat1-NH₂.

Fig. S10 The changes of energy and temperature with time and snapshots: (a) boat2-H, (b) boat2-F, (c) boat2-OH.

Fig. S12 The changes of energy and temperature with time and snapshots: (a) boat3-H, (b) boat3-F, (c) boat3-OH.

Fig. S13 The changes of energy and temperature with time and snapshots: (a) boat4-H, (b) boat4-F, (c) boat4-OH, (d) boat4-Cl, (e) boat4-NH₂.

Fig. S14 The band structures: (a) chair2-H, (b) chair2-F, (c) chair2-OH.

Fig. S15 The band structures: (a) boat1-F, (b) boat1-OH.

Fig S17. The band structures: (a) boat3-H, (b) boat3-F.

Fig. S18 The band structures: (a) boat4-F.

Fig. S19 Models of boat2-H: (a) B-doped, (b) N-doped.

Fig. S20 The absorbance spectrum: (a) chair2-H, (b) chair2-F, (c) chair2-OH.

Fig. S21 The absorbance spectrum: (a) boat1-F, (b) boat1-OH.

Fig. S22 The absorbance spectrum: (a) boat2-H.

Fig. S23 The absorbance spectrum: (a) boat3-H, (b) boat3-F.

Fig. S24 The absorbance spectrum: (a) boat4-F.