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S1. Pseudo-code of exploration algorithms 
 

S1.a. 𝑵𝟏 a-weight exploration 

• Explore 𝑁0 random initial configurations as a starting database: {𝒙, 𝐺(𝒙)} 
• For 𝑁1 steps: 

i. Rank dataset by their 𝐺(𝒙) value 

ii. Randomly choose one configuration 𝒙′′ from the top 𝑎% of ranked dataset 

iii. Record one new (𝒙′, 𝑮(𝒙′))configuration within a threshold ∆𝒙 of 𝒙′′ 

iv. Add new(𝒙′,𝑮(𝒙′)) to dataset 

 
S1.b. 𝑵𝟐 a-weight exploration 

• Use the dataset after 𝑁1 𝑎-weight exploration as a starting dataset: {𝒙, 𝐺(𝒙)} 
• For 𝑁2 steps: 

i. Rank dataset by their 𝐺(𝒙) value 
ii. Randomly choose one configuration 𝒙′′ from the top 𝑎% of ranked dataset 

iii. Record one new (𝒙′, 𝑮(𝒙′)) configuration within a threshold ∆𝒙 of 𝒙′′ 

iv. Add new (𝒙′, 𝑮(𝒙′)) to dataset 

 
S1.c. 𝑵𝟐 ML-guided exploration 

• Use the dataset after 𝑁1 𝑎-weight exploration as a starting dataset: {𝒙, 𝐺(𝒙)} 
• For 𝑁2 steps: 

i. Train ML model with all {𝒙, 𝐺(𝒙)} in dataset 

ii. Predict 𝐺(𝒙′) for configurations within a threshold ∆𝒙 of all previous 𝒙 in dataset 

iii. Add to dataset the (𝒙′, 𝑮(𝒙′)) point with minimum 𝐺(𝒙’) 

 
The complete code, along with instructions and examples, can be found in this online repository: 
https://github.com/marcosdelcueto/MachineLearningLandscapes 

 
S2. Estimation of a and S from arbitrary datasets 

 
Given the definition we introduced of adventurousness: future points are obtained by small 
variations of points in the top a percentile of previous points, we can estimate the adventurousness 
of a time-ordered data set following the general procedure: 

• For a given set of Δa values, consider a series of time-ordered data points xi. 

• For each of the i points, calculate what is the dmin distance of xi with the closest xj data 
point in the a percentile, such that j<i.  

• Then, get the maximum dmin distance of all considered points, dmax-min. 

• Finally, we can represent dmax-min as a function of a. dmax-min measures what the largest 
closest-distance of a point i with the previous points in the top a percentile is. dmax-min will 
decrease as a increases, until it levels off, indicating what the estimated a is. 
 

We show the a estimation using this methodology in Figure S1, averaged over 100 datasets with a 
specific (n,N1,a,S) combination. 
 
Our definition of smoothness directly influences the corrugation of the data. Thus, one can estimate 
S following: 

• Calculate the ΔG and Δx differences of each point i in the data set with all other j points. 

• Calculate corrugation as the mean value of ΔG/Δx for all points. 

• Estimate S as the weighted inverse of the corrugation. This weight allows us to adjust S 
values to our arbitrary (0,1/3) range.  
 

 We also calculated the S estimation for 100 research landscapes with a specific (n,N1,a,S) 
combination in Figure S2. These cases intend to serve as an example of how one can successfully 
approximate a and S to take full advantage of the guiding capabilities of MLgain.  
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Fig. S1. Estimated a values for n=3, N1=200. We represent the median value, plus/minus standard 
deviation of the estimation of 100 datasets. Red lines indicate what the value of an ideal estimation 
would be. 
 
 

 
Fig. S2. Estimated S values for n=3, N1=200. We represent the median value, plus/minus standard 
deviation of the estimation of 100 datasets. Red lines indicate what the value of an ideal estimation 
would be. 
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S3. a-bias effect on RMSE with different dimensionality and smoothness 
 

In Figures S3-S4, we show the RMSE values for different smoothness and dimensionalities, using 
GPR (for n=3, see Figure S8). We observe the same trends in all cases, where the a-bias (RMSE 
difference between a=10% and a=100%) tends to decrease when increasing the dataset size or 
smoothness. Datasets of larger dimensionality are more complex, so the a-bias is still significant at 
N1=1000, and we would need larger datasets to start to reduce the a-bias significantly. 
 

 
Fig. S3. Prediction error (RMSE) obtained with GPR and a 10-fold cross-validation, for different 
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=2. 
 

 
Fig. S4. Prediction error (RMSE) obtained with GPR and a 10-fold cross-validation, for different 
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=4. 
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S4. a-bias effect on RMSE with different ML algorithms 
 

We have considered four ML algorithms to fit our data: i) k-Nearest Neighbours (k-NN)(1), ii) 
Gradient Boosting Regression (GBR)(2), iii) Kernel Ridge Regression (KRR)(3, 4) and iv) Gaussian 
Process Regression (GPR)(5). These methods are representative of different categories of 
supervised learning methods frequently used to analyze problems in materials science(6). 
 
In k-NN, the value of a given configuration x is obtained as the mean value of its k nearest 
neighbors, with weights that are proportional to the Euclidean distance between x and its nearest 
neighbors. The optimum number of nearest neighbors k is selected in each case from a list of 
possible values as the one that minimizes the RMSE of the fit. 
 
GBR is composed of an ensemble of decision trees, built in a forward stage-wise fashion to 
minimize a loss function. It uses a specific learning rate value to correct for mistakes on the previous 
stage. We use the mean square error with the improvement score by Friedman(2) as a loss 
function. The total number of boosting stages, learning rate, maximum depth of individual 
regression estimators, the minimum number of samples to split an internal node and required to be 
at a leaf node are all optimized from a set of possible values. 
 
 GPR makes use of weighted averages of training data, with probabilistic weights. GPR uses 
covariance functions (kernels) to measure the similarity between points. In our case, we have used 
an RBF kernel: 

𝑘(𝑥𝑖, 𝑥𝑗) = 𝑒−𝛾|𝑥𝑖−𝑥𝑗|
2

 

where γ is the Gaussian kernel variance. The variance of the estimation is further controlled by the 
regularisation constant α. Both hyper-parameters, α and γ, are optimized by minimizing the RMSE 
of the test set with a differential evolution algorithm (7), as implemented in SciPy (8). 
 
 KRR is a generalized version of the least square procedure, with the addition of non-linearity and 
regularisation. We have used the same kernel that we did for GPR, whose hyper-parameters are 
optimized with the same differential evolution algorithm(7). 
 
 

S4.a. 10-fold cross-validation 
 

 To train these algorithms, we have used a 10-fold cross-validation, in which the original sample is 
randomly partitioned into ten equal-sized subsamples. Of the ten subsamples, a single subsample 
is retained as the validation data for testing the model, and the remaining nine subsamples are 
used as training data. The cross-validation process is repeated ten times, with each of the ten 
subsamples used exactly once as the validation data. The final RMSE is calculated by comparing 
all predicted and actual values at each fold. Hyperparameters are optimized to minimize this RMSE. 
This cross-validation method is standard for advanced properties data sets in material science, 
containing typically between hundreds and thousands of entries(6). 
 
We show in Figures S5-S8 how the RMSE resulting with this cross-validation, using different 
smoothness and ML algorithms, for n=3. We observe in all cases that RMSE decreases when 
increasing N1. Methods more sophisticated, as KRR and GPR produce smaller RMSE values, and 
we can see how they are able to overcome the a-bias when the research landscapes are large and 
smooth. GPR was finally chosen as the example to show in the main manuscript, as the results are 
slightly better with GPR overall. 
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Fig. S5. Prediction error (RMSE) obtained with k-NN and a 10-fold cross-validation, for different 
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=3. 
 

 
Fig. S6. Prediction error (RMSE) obtained with GBR and a 10-fold cross-validation, for different 
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=3. 
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Fig. S7. Prediction error (RMSE) obtained with KRR and a 10-fold cross-validation, for different 
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=3. 
 

 
Fig. S8. Prediction error (RMSE) obtained with GPR and a 10-fold cross-validation, for different 
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=3. 
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S4.b. 10-fold cross-validation vs last-10% validation 
 

In Figure S9, we show how the a-bias changes with the different validation methods, for the four 
ML algorithms studied. With a last-10% validation, we use a 10-fold cross-validation within the first 
90% of the time-ordered dataset to optimize the hyperparameters, and report the resulting RMSE 
for the last 10% of the time-ordered dataset. 
 
All algorithms display similar trends. It is observed how the a-bias (RMSE difference between 
a=10% and a=100%) increases when using a last-10% validation, which means that the data-bias 
introduced in the ML model is amplified when the dataset is time-ordered. 
 

 
Fig. S9. Prediction error (RMSE) obtained with a 10-fold cross-validation (green) and a last-10% 
validation (red), for a=10% (diamonds) and a=100% (circles), for different ML algorithms and 
dataset sizes. Datasets of dimensionality n=3. 
 
 
 

S5. ML-guided exploration prediction error 
 

In Figure S10, we show the relative error committed during the ML-guided exploration. To calculate 
this error, we compare the minimum predicted G value and the real value at that configuration. This 
error would be, in principle, unknown in real instances until an experiment is performed at that 
configuration. However, the use of research landscapes allows us to know what this error would 
be. The error is calculated with the following equation: 

𝜀𝑀𝐿 = |
𝐺𝑚𝑖𝑛
𝑀𝐿−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

− 𝐺𝑚𝑖𝑛
𝑀𝐿−𝑟𝑒𝑎𝑙

𝐺𝑚𝑖𝑛
𝑀𝐿−𝑟𝑒𝑎𝑙 | 

 
We can see in this figure how the prediction error is only significant when we are working with small 
datasets (N1<100), but it rapidly becomes negligible as one considers larger datasets.  
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Fig. S10. ML-guided exploration relative prediction error for different data set sizes (N1) and 
adventurousness (a) obtained for datasets with a dimensionality n=3. 
 
 

S6. Direct comparison a-weighted and ML-guided explorations 
 

After generating the research landscapes of size N1 with an a-weighted exploration algorithm, we 
perform two explorations for N2=15 steps, using i) a-weighted exploration, and ii) ML-guided 
exploration. In Figure S11, we show the comparison of the minimum G values (Gmin) found during 
the a-weighted explorations (in black circles) and the ML-guided exploration (in red diamonds) for 
a few a significant values. Note that both Gmin values are very similar for lower adventurousness, 
but their difference starts to increase significantly as adventurousness increases. The relative 
difference between these Gmin values will eventually be used to calculate MLgain. 
 

 
Fig. S11. Minimum G value obtained with GPR an n=3 with different data set sizes (N1) and 
adventurousness (a) with an a-weighted exploration (black) and ML-guided exploration (red). 
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S7. MLgain for other dimensionalities 
 

In Figure S12, we show how the MLgain values change for different a and n values. With all these 
values, we observe the same trend, where a window of opportunity to maximize MLgain is observed. 
We observe how MLgain is negative or very close to zero for small datasets, and it becomes 
negligible again when one uses very large datasets. It is for intermediate data set sizes, and large 
a values, that one sees a significant MLgain. MLgain tends to increase with dimensionality, which is 
not surprising, since there is more room for discovering new best-performing materials as one 
increases the underlying complexity of the field. 

 
Fig. S12. : Different 1D cuts of 𝑀𝐿𝑔𝑎𝑖𝑛 for different dataset sizes and dimensionalities (n), for a few 

significant adventurousness (a) values. 
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