

1

Determining Usefulness of Machine Learning in Materials Discovery
Using Simulated Research Landscapes.
Electronic Supplementary Information

Marcos del Cueto* and Alessandro Troisi*

*corresponding authors: Marcos del Cueto, Alessandro Troisi
Email: m.del-cueto@liverpool.ac.uk, a.troisi@liverpool.ac.uk

Contents:

S1. Pseudo-code of exploration algorithms

S1.a. 𝑁1 a-weight exploration

S1.b. 𝑁2 a-weight exploration

S1.c. 𝑁2 ML-guided exploration

S2. Estimation of a and S from arbitrary datasets

S3. a-bias effect on RMSE with different dimensionality and smoothness

S4. a-bias effect on RMSE with different ML algorithms

S4.a. 10-fold cross-validation

S4.b. 10-fold cross-validation vs last-10% validation

S5. ML-guided exploration prediction error

S6. Direct comparison of a-weighted and ML-guided explorations

S7. MLgain for other dimensionalities

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2021

mailto:m.del-cueto@liverpool.ac.uk
mailto:a.troisi@liverpool.ac.uk

2

S1. Pseudo-code of exploration algorithms

S1.a. 𝑵𝟏 a-weight exploration

• Explore 𝑁0 random initial configurations as a starting database: {𝒙, 𝐺(𝒙)}
• For 𝑁1 steps:

i. Rank dataset by their 𝐺(𝒙) value

ii. Randomly choose one configuration 𝒙′′ from the top 𝑎% of ranked dataset

iii. Record one new (𝒙′, 𝑮(𝒙′))configuration within a threshold ∆𝒙 of 𝒙′′

iv. Add new(𝒙′,𝑮(𝒙′)) to dataset

S1.b. 𝑵𝟐 a-weight exploration

• Use the dataset after 𝑁1 𝑎-weight exploration as a starting dataset: {𝒙, 𝐺(𝒙)}
• For 𝑁2 steps:

i. Rank dataset by their 𝐺(𝒙) value
ii. Randomly choose one configuration 𝒙′′ from the top 𝑎% of ranked dataset

iii. Record one new (𝒙′, 𝑮(𝒙′)) configuration within a threshold ∆𝒙 of 𝒙′′

iv. Add new (𝒙′, 𝑮(𝒙′)) to dataset

S1.c. 𝑵𝟐 ML-guided exploration

• Use the dataset after 𝑁1 𝑎-weight exploration as a starting dataset: {𝒙, 𝐺(𝒙)}
• For 𝑁2 steps:

i. Train ML model with all {𝒙, 𝐺(𝒙)} in dataset

ii. Predict 𝐺(𝒙′) for configurations within a threshold ∆𝒙 of all previous 𝒙 in dataset

iii. Add to dataset the (𝒙′, 𝑮(𝒙′)) point with minimum 𝐺(𝒙’)

The complete code, along with instructions and examples, can be found in this online repository:
https://github.com/marcosdelcueto/MachineLearningLandscapes

S2. Estimation of a and S from arbitrary datasets

Given the definition we introduced of adventurousness: future points are obtained by small
variations of points in the top a percentile of previous points, we can estimate the adventurousness
of a time-ordered data set following the general procedure:

• For a given set of Δa values, consider a series of time-ordered data points xi.

• For each of the i points, calculate what is the dmin distance of xi with the closest xj data
point in the a percentile, such that j<i.

• Then, get the maximum dmin distance of all considered points, dmax-min.

• Finally, we can represent dmax-min as a function of a. dmax-min measures what the largest
closest-distance of a point i with the previous points in the top a percentile is. dmax-min will
decrease as a increases, until it levels off, indicating what the estimated a is.

We show the a estimation using this methodology in Figure S1, averaged over 100 datasets with a
specific (n,N1,a,S) combination.

Our definition of smoothness directly influences the corrugation of the data. Thus, one can estimate
S following:

• Calculate the ΔG and Δx differences of each point i in the data set with all other j points.

• Calculate corrugation as the mean value of ΔG/Δx for all points.

• Estimate S as the weighted inverse of the corrugation. This weight allows us to adjust S
values to our arbitrary (0,1/3) range.

 We also calculated the S estimation for 100 research landscapes with a specific (n,N1,a,S)
combination in Figure S2. These cases intend to serve as an example of how one can successfully
approximate a and S to take full advantage of the guiding capabilities of MLgain.

3

Fig. S1. Estimated a values for n=3, N1=200. We represent the median value, plus/minus standard
deviation of the estimation of 100 datasets. Red lines indicate what the value of an ideal estimation
would be.

Fig. S2. Estimated S values for n=3, N1=200. We represent the median value, plus/minus standard
deviation of the estimation of 100 datasets. Red lines indicate what the value of an ideal estimation
would be.

4

S3. a-bias effect on RMSE with different dimensionality and smoothness

In Figures S3-S4, we show the RMSE values for different smoothness and dimensionalities, using
GPR (for n=3, see Figure S8). We observe the same trends in all cases, where the a-bias (RMSE
difference between a=10% and a=100%) tends to decrease when increasing the dataset size or
smoothness. Datasets of larger dimensionality are more complex, so the a-bias is still significant at
N1=1000, and we would need larger datasets to start to reduce the a-bias significantly.

Fig. S3. Prediction error (RMSE) obtained with GPR and a 10-fold cross-validation, for different
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=2.

Fig. S4. Prediction error (RMSE) obtained with GPR and a 10-fold cross-validation, for different
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=4.

5

S4. a-bias effect on RMSE with different ML algorithms

We have considered four ML algorithms to fit our data: i) k-Nearest Neighbours (k-NN)(1), ii)
Gradient Boosting Regression (GBR)(2), iii) Kernel Ridge Regression (KRR)(3, 4) and iv) Gaussian
Process Regression (GPR)(5). These methods are representative of different categories of
supervised learning methods frequently used to analyze problems in materials science(6).

In k-NN, the value of a given configuration x is obtained as the mean value of its k nearest
neighbors, with weights that are proportional to the Euclidean distance between x and its nearest
neighbors. The optimum number of nearest neighbors k is selected in each case from a list of
possible values as the one that minimizes the RMSE of the fit.

GBR is composed of an ensemble of decision trees, built in a forward stage-wise fashion to
minimize a loss function. It uses a specific learning rate value to correct for mistakes on the previous
stage. We use the mean square error with the improvement score by Friedman(2) as a loss
function. The total number of boosting stages, learning rate, maximum depth of individual
regression estimators, the minimum number of samples to split an internal node and required to be
at a leaf node are all optimized from a set of possible values.

 GPR makes use of weighted averages of training data, with probabilistic weights. GPR uses
covariance functions (kernels) to measure the similarity between points. In our case, we have used
an RBF kernel:

𝑘(𝑥𝑖, 𝑥𝑗) = 𝑒−𝛾|𝑥𝑖−𝑥𝑗|
2

where γ is the Gaussian kernel variance. The variance of the estimation is further controlled by the
regularisation constant α. Both hyper-parameters, α and γ, are optimized by minimizing the RMSE
of the test set with a differential evolution algorithm (7), as implemented in SciPy (8).

 KRR is a generalized version of the least square procedure, with the addition of non-linearity and
regularisation. We have used the same kernel that we did for GPR, whose hyper-parameters are
optimized with the same differential evolution algorithm(7).

S4.a. 10-fold cross-validation

 To train these algorithms, we have used a 10-fold cross-validation, in which the original sample is
randomly partitioned into ten equal-sized subsamples. Of the ten subsamples, a single subsample
is retained as the validation data for testing the model, and the remaining nine subsamples are
used as training data. The cross-validation process is repeated ten times, with each of the ten
subsamples used exactly once as the validation data. The final RMSE is calculated by comparing
all predicted and actual values at each fold. Hyperparameters are optimized to minimize this RMSE.
This cross-validation method is standard for advanced properties data sets in material science,
containing typically between hundreds and thousands of entries(6).

We show in Figures S5-S8 how the RMSE resulting with this cross-validation, using different
smoothness and ML algorithms, for n=3. We observe in all cases that RMSE decreases when
increasing N1. Methods more sophisticated, as KRR and GPR produce smaller RMSE values, and
we can see how they are able to overcome the a-bias when the research landscapes are large and
smooth. GPR was finally chosen as the example to show in the main manuscript, as the results are
slightly better with GPR overall.

6

Fig. S5. Prediction error (RMSE) obtained with k-NN and a 10-fold cross-validation, for different
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=3.

Fig. S6. Prediction error (RMSE) obtained with GBR and a 10-fold cross-validation, for different
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=3.

7

Fig. S7. Prediction error (RMSE) obtained with KRR and a 10-fold cross-validation, for different
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=3.

Fig. S8. Prediction error (RMSE) obtained with GPR and a 10-fold cross-validation, for different
smoothness (S), adventurousness (a) and data set sizes (N1). Dataset with dimensionality n=3.

8

S4.b. 10-fold cross-validation vs last-10% validation

In Figure S9, we show how the a-bias changes with the different validation methods, for the four
ML algorithms studied. With a last-10% validation, we use a 10-fold cross-validation within the first
90% of the time-ordered dataset to optimize the hyperparameters, and report the resulting RMSE
for the last 10% of the time-ordered dataset.

All algorithms display similar trends. It is observed how the a-bias (RMSE difference between
a=10% and a=100%) increases when using a last-10% validation, which means that the data-bias
introduced in the ML model is amplified when the dataset is time-ordered.

Fig. S9. Prediction error (RMSE) obtained with a 10-fold cross-validation (green) and a last-10%
validation (red), for a=10% (diamonds) and a=100% (circles), for different ML algorithms and
dataset sizes. Datasets of dimensionality n=3.

S5. ML-guided exploration prediction error

In Figure S10, we show the relative error committed during the ML-guided exploration. To calculate
this error, we compare the minimum predicted G value and the real value at that configuration. This
error would be, in principle, unknown in real instances until an experiment is performed at that
configuration. However, the use of research landscapes allows us to know what this error would
be. The error is calculated with the following equation:

𝜀𝑀𝐿 = |
𝐺𝑚𝑖𝑛
𝑀𝐿−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

− 𝐺𝑚𝑖𝑛
𝑀𝐿−𝑟𝑒𝑎𝑙

𝐺𝑚𝑖𝑛
𝑀𝐿−𝑟𝑒𝑎𝑙 |

We can see in this figure how the prediction error is only significant when we are working with small
datasets (N1<100), but it rapidly becomes negligible as one considers larger datasets.

9

Fig. S10. ML-guided exploration relative prediction error for different data set sizes (N1) and
adventurousness (a) obtained for datasets with a dimensionality n=3.

S6. Direct comparison a-weighted and ML-guided explorations

After generating the research landscapes of size N1 with an a-weighted exploration algorithm, we
perform two explorations for N2=15 steps, using i) a-weighted exploration, and ii) ML-guided
exploration. In Figure S11, we show the comparison of the minimum G values (Gmin) found during
the a-weighted explorations (in black circles) and the ML-guided exploration (in red diamonds) for
a few a significant values. Note that both Gmin values are very similar for lower adventurousness,
but their difference starts to increase significantly as adventurousness increases. The relative
difference between these Gmin values will eventually be used to calculate MLgain.

Fig. S11. Minimum G value obtained with GPR an n=3 with different data set sizes (N1) and
adventurousness (a) with an a-weighted exploration (black) and ML-guided exploration (red).

10

S7. MLgain for other dimensionalities

In Figure S12, we show how the MLgain values change for different a and n values. With all these
values, we observe the same trend, where a window of opportunity to maximize MLgain is observed.
We observe how MLgain is negative or very close to zero for small datasets, and it becomes
negligible again when one uses very large datasets. It is for intermediate data set sizes, and large
a values, that one sees a significant MLgain. MLgain tends to increase with dimensionality, which is
not surprising, since there is more room for discovering new best-performing materials as one
increases the underlying complexity of the field.

Fig. S12. : Different 1D cuts of 𝑀𝐿𝑔𝑎𝑖𝑛 for different dataset sizes and dimensionalities (n), for a few

significant adventurousness (a) values.

References
1. N. S. Altman, An Introduction to Kernel and Nearest-Neighbor Nonparametric
Regression. The American Statistician 46, 175–185 (1992).
2. J. H. Friedman, Greedy Function Approximation: A Gradient Boosting Machine. The
Annals of Statistics 29, 1189–1232 (2001).
3. K. Vu, et al., Understanding kernel ridge regression: Common behaviors from simple
functions to density functionals. International Journal of Quantum Chemistry 115, 1115–1128
(2015).
4. M. Rupp, Machine learning for quantum mechanics in a nutshell. International Journal of
Quantum Chemistry 115, 1058–1073 (2015).
5. E. O. Pyzer-Knapp, G. N. Simm, A. A. Guzik, A Bayesian approach to calibrating high-
throughput virtual screening results and application to organic photovoltaic materials. Mater.
Horizons 3, 226–233 (2016).
6. C. Chen, et al., A Critical Review of Machine Learning of Energy Materials. Advanced
Energy Materials 10, 1903242 (2020).
7. R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic for global
Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997).
8. P. Virtanen, et al., SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods 17, 261–272 (2020).

