Supporting Information

A combined experimental and theoretical investigation on the excited-state dynamics of 2,4,6-trinitrotoluene (TNT) in DMSO solvent

Runze Liu^{a,†}, Fangjian Shang^{b,c,†}, Ying Xiong^d, Chaoyang Zhang^d, Songqiu Yang^b,Panwang Zhou^{a,*}, and Jianyong Liu^{b,*}

^a Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266235, P. R. China.

^b State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

^c University of the Chinese Academy of Sciences, Beijing 10049, P. R. China.

^d Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. China.

[†]These authors contribute to this work equally.

*Corresponding author: <u>beam@dicp.ac.cn; pwzhou@sdu.edu.cn</u>

Table S1. Excitation energies (eV), Oscillator strengths f, and molecular orbital contributions to the excited state transitions, calculated at SMD/M06-2X/def2-TZVP level of theory at the optimized ground state geometry. (HOMO and LUMO are molecular orbitals of 58 and 59, respectively)

	Singlet				Triplet				
state	transition	contrib.	E(eV)	f	state	transition	contrib.	E(eV)	f
1	57→60	20.4%	4.043	0.0031		54→60	37.7%	2.856	0.0
	49→60	19.2%			1	56→60	37.6%		
	52→61	15.0%				56→62	11.4%		
	50→61	9.8%				55→59	39.3%	2.858	0.0
	49→61	19.8%	4.046	0.0186	2	55→61	36.1%		
2	52→60	17.4%				56→62	11.0%		
2	57→61	15.2%				55→59	65.8%	2.868	0.0
	50→60	12.0%			3	55→61	22.5%		
	53→59	43.0%	4.072	0.0000		55→63	15.3%		
3	51→59	22.0%				57→60	33.0%	3.466	0.0
	53→61	13.0%			4	52→61	13.4%		
	51→61	22.3%	4.523	0.0008		58→59	12.7%		
4	48→60	16.6%				49→61	19.4%	3.570	0.0
4	53→61	11.4%			Б	52→60	16.9%		
	50→60	10.2%			5	57→60	16.4%		
	51→60	22.3%	4.531	0.0003		50→60	11.6%		
5	48→61	21.0%				53→59	41.6%	3.628	0.0
	53→60	12.2%			6	51→59	21.6%		
	48→59	28.4%	4.550	0.0001		53→61	13.3%		
6	50→59	19.7%			7	58→59	62.4%	3.941	0.0
	52→59	14.7%							
7	57→59	46.5%	4.910	0.0009					
/	58→60	44.3%							
8	58→59	90.4%	5.224	0.2779					
9	58→61	41.6%	5.628	0.3057					

	57→59	36.2%					
	57→60	41.7%	5.768	0.3157			
10	58→61	28.5%					
	49→60	13.4%					
44	58→61	62.3%	6.006	0.0207			
	57→60	31.3%					
12	57→61	71.8%	6.147	0.0452			

Table S2. Excitation energies (eV), Oscillator strengths f, and molecular orbital contributions to the excited state transitions, calculated at SMD/M06-2X/def2-TZVP level of theory at the geometry of the optimized first singlet excited state S₁.

	Singlet					Triple	t		
state	transition	contrib.	E(eV)	f	state	transition	contrib.	E(eV)	f
1	58→59	71.2%	2.019	0.0001		56→59	57.8%	0.881	0.0
I	55→59	16.1%				55→59	44.7%		
					1	56←59	-16.0%		
						58→59	15.9%		
						55←59	-15.5%		
					2	58←59	61.2%	1.608	0.0
					2	55→59	27.0%		
					3	58→59	81.6%	2.787	0.0

Figure S1. Charge transfer analysis based on the hole and electron difference on the methylphenyl group (red) and nitro group (green).

S₀-**S**₉

 Fragment 1: Hole 84.5%
 Electron 31.12%
 Diff 53.38%

 Fragment 2: Hole 15.5%
 Electron 68.88%

S₀-S₁₀

 Fragment 1: Hole 87.11%
 Electron 19.51%
 Diff 67.60%

 Fragment 2: Hole 12.89%
 Electron 80.49%

Fragment 1: methylphenyl group; (red region) Fragment 2: Nitro groups (green region)

Figure S2. Optimized structures for the S_0 state and S_1 state for the DMSO solvated TNT molecule at SMD/M06-2X/def2-TZVP level.

Table S3. Structural information for the optimized S_0 and S_1 state geometry.

	S ₀ state geometry	S ₁ state geometry
$D(C_1 - C_6 - N_{16} - O_{17})$	-40.94	-2.27
$A(O_{17}-N_{16}-O_{18})$	125.02	104.40
$B(C_6-N_{16})$	1.478	1.368
B(N ₁₆ -O ₁₇)	1.211	1.282

Table S4. Vertical excitations of DMSO solvated TNT at S_0 minimum calculated using M06-2X and STEOM-CCSD with def2-TZVP basis set.

Singlet	M06-2X/def2-TZVP		STEOM-CCSD/d	ef2-TZVP	
state	E(eV)	f	E(eV)	f	
S ₁	4.043	0.0031	3.923	0.0002	
S ₂	4.046	0.0186	3.985	0.0134	
S ₃	4.072	0.0000	3.990	0.0071	
S ₄	4.522	0.0008	4.360	0.0000	
S ₅	4.522	0.0008	5.362	0.3156	
Triplet	M06-2X/d	lef2-TZVP	STEOM-CCSD/def2-TZVP		
state	E(eV)	f	E(eV)	f	
T ₁	2.856	0.0	3.245	0.0	
T ₂	2.858	0.0	3.450	0.0	
T ₃	2.869	0.0	3.489	0.0	
T ₄	3.466	0.0	3.491	0.0	
T ₅	3.570	0.0	3.767	0.0	

Singlet	M06	6-2X	STEOM-CCSD		
state	E(eV)	f	E(eV)	f	
S ₁	2.019	0.0001	1.933	0.0002	
S ₂	4.013	0.0094	3.916	0.0025	
S ₃	4.024	0.0000	3.947	0.0150	
S ₄	4.452	0.0499	4.340	0.0880	
S ₅	4.520	0.0088	5.300	0.2738	
Triplet	M00	5-2X	STEOM-CCSD		
state	E(eV)	f	E(eV)	f	
T ₁	0.881	0.0	1.583	0.0	
T ₂	1.601	0.0	2.070	0.0	
T ₃	2.789	0.0	3.023	0.0	
T ₄	3.315	0.0	3.517	0.0	
T ₅	3.557	0.0	3.524	0.0	

Table S5. Vertical excitations of DMSO solvated TNT at S_1 minimum calculated using M06-2X and STEOM-CCSD with def2-TZVP basis set.

The geometry optimization for the S_0 - S_1 PES conical intersection is performed based on the spinflip TDDFT method with B3LYP functional and def2-TZVP basis set. The optimization is converged with the E_{CI} energy difference less than 0.0001 Hatree. Single point energy calculation than carried out at M06-2X/def2-TZVP level to compare with the S_{1-min} energy. All calculations employ CPCM/SMD solvent model to evaluate the solvent effect.

Figure S3. Optimized structure of the S_0 - S_1 conical intersection.

Optimized S₀-S₁ conical intersection structure

Table S6. Structural information for the optimized S_0 and S_1 conical intersection geometry.

	CI geometry
$D(C_1 - C_6 - N_{16} - O_{17})$	-105.81
$A(O_{17}-N_{16}-O_{18})$	91.59
$B(C_6-N_{16})$	1.428
B(N ₁₆ -O ₁₇)	1.320

Figure S4. Schematic view for the DMSO solvated TNT excited state dynamics from S_1 to S_0

Figure S5. *Hole-electron* orbitals for TNT S_0 - S_1 transition. Blue: *hole*; white: *electron*.

Table S6. The STEOM-CCSD/def2-TZVP calculated triplet states were shown

	E (Hatree)	MOs	Contrib.
T ₁	1.583	55 -> 59	70.5 %
T ₂	2.070	56 -> 59	70.4 %
T ₃	3.023	57 -> 59	45.0%

Figure S6.

Cartesian coordinates for the key structures in the current theoretical study.

Optimized ground state geometry of TNT:

С	-0.88147300	-1.20676100	-0.01385400
С	-1.54834400	0.00004000	-0.04075500
С	-0.88141200	1.20681000	-0.01385300
С	0.49745500	1.16846100	0.02594400
С	1.26167900	-0.00003400	0.06711200
С	0.49739400	-1.16848100	0.02594800
Н	-1.41330100	-2.14826500	-0.03208300
Н	-1.41319700	2.14834100	-0.03208400
С	2.75238500	-0.00010800	0.22837100
Н	3.07592500	-0.88218800	0.77563500
Н	3.24078300	-0.00014000	-0.74662500
Н	3.07603600	0.88192400	0.77563900
N	1.17080400	2.48367900	0.01297900
0	2.15099500	2.60471200	-0.68827700
0	0.68167500	3.36703100	0.68299000
N	1.17068400	-2.48372700	0.01300300
0	0.68133200	-3.36713800	0.68277400
0	2.15103100	-2.60472300	-0.68804200
N	-3.02118300	0.00007800	-0.09515900
0	-3.58214000	1.07384200	-0.11529600
0	-3.58220200	-1.07365400	-0.11536400

Optimized S1 state geometry of TNT molecule

С	-0.85151400	-1.21378200	-0.00962200
С	-1.54731700	-0.02980600	-0.01372400
С	-0.91483000	1.19831800	0.00234200
С	0.46919700	1.19945300	0.01374300
С	1.26782900	0.06214700	0.06188300
С	0.54698400	-1.15892600	0.02778200
Н	-1.37082100	-2.16277900	-0.03881900
Н	-1.47509300	2.12301700	-0.01057000
С	2.75352200	0.10320900	0.19196000
Н	3.10113100	-0.67983100	0.86688500
Н	3.23431400	-0.04745400	-0.77913500
Н	3.09615500	1.05687400	0.58796100
Ν	1.09329300	2.53202000	-0.03116000
0	2.01542200	2.69522700	-0.80361200
0	0.62341400	3.39103000	0.68672500
Ν	1.18606800	-2.36810800	0.04507900
0	0.61463600	-3.51538900	0.07131100
0	2.43102500	-2.63548900	-0.08173900
N	-3.01539700	-0.07137400	-0.04987400
0	-3.60728700	0.98911800	-0.06844800
0	-3.54929200	-1.16215700	-0.05684000

Optimized S ₀ -S ₁ conical intersection geometry

С	-0.802423	-1.213554	-0.140431
С	-1.525679	-0.033951	-0.138378
С	-0.908861	1.195689	-0.005490
С	0.473960	1.227581	0.085510
С	1.282687	0.086812	0.077607
С	0.577045	-1.127089	-0.015161
Н	-1.293659	-2.172649	-0.204924
Н	-1.485154	2.108224	0.013751
С	2.781027	0.113157	0.153557
Н	3.177866	-0.833070	0.510229
Н	3.191370	0.303470	-0.840850
Н	3.130662	0.905569	0.812117
N	1.075708	2.574339	0.166183
0	2.083366	2.786488	-0.487503
0	0.510517	3.398863	0.866378
N	1.330861	-2.339374	-0.046245
0	1.872965	-2.872749	1.032754
0	0.738888	-3.491639	-0.363794
N	-2.993004	-0.089169	-0.257267
0	-3.599481	0.969450	-0.307832
0	-3.517225	-1.191078	-0.298086