Electronic Supplementary Information: Role of the OH-group in the Adsorption Properties of Methanol, Ethanol, and Ethylene Glycol on 15-atom 3d, 4d, and 5d Transition-metal Clusters

Raquel C. Bezerra,*,[†] João Paulo A. de Mendonça,*,[‡] Paulo C. D.

Mendes,*,[‡] Raimundo R. Passos,*,[†] and Juarez L. F. Da Silva*,[‡]

†Department of Chemistry, Federal University of Amazonas, Av. General Rodrigo Octávio, 6200, Coroado I, 69080-900, Manaus, AM, Brazil

‡São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, *São Carlos, SP, Brazil*

E-mail: racosbez@gmail.com; jpalastus@gmail.com; paulaocdm@gmail.com; rrpassos@ufam.edu.br; juarez_dasilva@iqsc.usp.br

Contents

1	Intro	oduction	S-2
2	Con	nputational Parameters	S-2
	2.1	Technical Details of the PAW projectors	S-2
	2.2	Definitions: Structural, Energetic and Electronic Parameters	S-3
3	Stru	ctural, Electronic, and Energetic Properties of the Gas-phase Clusters	S-5
4	Gas	-phase Alcohols	S-7

5	All optimized structures for the adsorption of the methanol, ethanol and ethylene										
	glycol on TM ₁₅ lusters	S-9									
6	Geometric Parameters of the Adsorbed Systems	S-29									
7	Energetic properties off the adsorbed systems	S-33									
8	Electronic and charges properties of the adsorbed systems	S-35									
9	Linear Regression	S-44									

1 Introduction

Several additional data are reported in this electronic supplementary information (ESI) file, which complement our results reported within the manuscript. Below, we list the most important data:

- 1. The computational parameters, in particular, the PAW projectors technical details.
- 2. The energetic, structural, electronic and charge properties for the gas-phase clusters and alcohols.
- 3. All configurations of the adsorbed systems are available along the relative energies.
- 4. An example of clustering technique employed for the selection of the representative configurations of the adsorbed systems.
- 5. The energetic, structural and electronic properties for the representative configurations of the adsorbed systems.

2 Computational Parameters

2.1 Technical Details of the PAW projectors

The selected PAW projects selected from VASP are listed in Table S1 with their respective number of valence electrons and maximum recommended cutoff energies, e.g., ENMAX obtained

from the employed POTCAR files. From our experience using VASP in the last 25 years, we found out that the recommended ENMAX cutoff energies should be increases slightly to yield accurate results. Thus, from a large number of convergence tests along the years, we employed as standard a cutoff energy of 12.50 % higher than highest maximum recommended cutoff energy among the chemical species within a given system, ENMAX_{max}.

For example, for the adsorption of methanol, ethanol, ethylene glycol on transition-metal clusters, the highest recommended cutoff energy is from the O atom, i.e., 434.431 eV, and hence, we employed for all those calculations a cutoff energy, ENCUT, of 488.734 eV. This particular cutoff energy is used for all total energy, geometric optimizations, density of states, etc. We understand that this particular choose increase the computational cost, however, it provides accurate results and proper approach to compare the results within all group members instead that every group member decide to use a slightly different cutoff energy.

For stress tensor calculations to obtain the equilibrium volume of crystal structures, we employed a cutoff energy from 1.50 up to 2.00 the highest recommended cutoff energy in POTCAR, which yields accurate results for the lattice parameters. Furthermore, lattice constant calculations can require even larger cutoff energies, e.g., 2.50 times the highest recommended cutoff energies. Those rules based on empirical experience looks simple, however, combined with the information within the POTCAR files, they provide guidelines for consistent calculations for a wide range of materials, which is the case of the present study.

2.2 Definitions: Structural, Energetic and Electronic Parameters

• To obtain the average structural parameters for transition-metal clusters, we employed the effective coordination concept, which yields the effective coordination number (ECN^{*i*}) and the weighted bond length distance (d_{av}^i) for each atom *i* in the cluster. The effective coordination number (in Number of Nearest Neighbors - NNN) for a given atom *i* is given by the following equation,

$$ECN^{i} = \sum_{\substack{j=1, \ i \neq j}}^{N} w_{ij} = \sum_{\substack{j=1, \ i \neq j}}^{N} exp\left[1 - \left(\frac{d_{ij}}{(d_{av}^{i} + d_{av}^{j})/2}\right)^{6}\right],$$
(1)

Specie	PAW Projector	Z_{val}	ENMAX (eV)
С	C_GW_new 19Mar2012	4	413.992
0	O_GW 19Mar2012	6	434.431
Н	H_GW 21Apr2008	1	300.000
Ag	Ag_GW 06Mar2008	11	249.844
Au	Au_GW 23Mar2010	11	248.344
Co	Co_GW 31Mar2010	9	323.400
Cu	Cu_GW 19May2006	11	417.039
Fe	Fe_GW 31Mar2010	8	321.007
Ir	Ir_sv_GW 23Mar2010	17	319.843
Ni	Ni_GW 31Mar2010	10	357.323
Os	Os_sv_GW 23Mar2010	16	319.773
Pd	Pd_GW 06Mar2008	10	250.925
Pt	Pt_GW 10Mar2009	10	248.408
Rh	Rh_GW 06Mar2008	9	247.408
Ru	Ru_sv_GW 05Dec2013	16	348.106

Table S1: PAW-PBE Projectors: chemical specie, POTCAR for the calculations, number of valence electrons, Z_{val} , and default recommended cutoff energy for the plane waves.

where the sum runs over all atoms and the d_{av}^i parameters are obtained for each atom using a self-consistent procedure. N is the number of transition-metal atoms within the cluster. Thus, the average coordination for a given cluster can be obtained by the following equation,

$$\text{ECN}_{av} = \frac{1}{N} \sum_{i=1}^{N} \text{ECN}_i .$$
⁽²⁾

• The weighted bond length (in Å) can be obtained by the following equation,

$$d_{av}^{i,new} = \frac{\sum_{\substack{i \neq j \\ i \neq j}}^{N} d_{ij} exp\left[1 - \left(\frac{d_{ij}}{(d_{av}^{i} + d_{av}^{j})/2}\right)^{6}\right]}{\sum_{\substack{i \neq j \\ i \neq j}}^{N} exp\left[1 - \left(\frac{d_{ij}}{(d_{av}^{i,old} + d_{av}^{j,old})/2}\right)^{6}\right]}.$$
(3)

The present equation is solved using a self-consistent framework, where the smallest distance between the atoms are the initial values. Thus, the average weighted bond lengths are given by the following equations,

$$d_{av} = \frac{1}{N} \sum_{i=1}^{N} d_{av}^{i} \,. \tag{4}$$

• The binding energy (in eV) per cluster can be obtained by the following equation,

$$E_b = E_{tot}^{TM15} - \sum_i E_{tot}^{i\ free-atom} , \qquad (5)$$

where E_{tot}^{TM15} and $E_{tot}^{i\ free-atom}$ are the total energies of the cluster and the free-atoms, respectively, obtained from spin-polarized calculations.

3 Structural, Electronic, and Energetic Properties of the Gas-phase Clusters

Our group has worked on the adsorption of molecular systems on finite size particles for long time, and hence, we have identified several descriptors, which play a crucial role in the study of gas-phase clusters and adsorption of molecular species on clusters. For example, in Table S2, we summarized the total magnetic moment for every cluster, binding energy per atom, and several average properties such as the effective coordination number, weighted bond lengths, center of gravity of the *d*-states. Furthermore, we indicated also the size of the cubic box employed for all calculations, which includes also the alcohol adsorption studies.

Table S2: Energetical, structural, and electronic properties of gas-phase 15-atom transition-metal (TM) clusters: chemical specie; total energy, E_{tot} (eV); total magnetic moment, m_{tot} (μ_B); total energy of the free atom, $E_{tot}^{free-atom}$; binding energy, E_b (eV); average effective coordination number, ECN_{av} (number of nearest neighbours - NNN); average weighted bond length, d_{av} (Å); size of the cubic box (Å); *d*-states center for the up-, down-, and average spin-components, ε_d^{up} , ε_d^{dn} , ε_d^{av} , (eV) for the TM₁₅ clusters.

ТМ	E_{tot}	<i>m</i> _{tot}	$E_{tot}^{free-atom}$	E_b	ECN _{av}	d_{av}	box	$arepsilon_d^{up}$	\mathcal{E}_{d}^{dn}	$\mathcal{E}_d^{\mathrm{av}}$
Fe	-102.16384708	48	-3.36353534	-3.45	6.16	2.45	21.70	-2.34	-1.25	-1.80
Ru	-100.98277854	8	-2.19315702	-4.54	5.39	2.50	23.00	-2.53	-2.64	-2.58
Os	-145.06182256	2	-3.99344123	-5.68	4.68	2.48	23.30	-3.03	-3.03	-3.03
Co	-81.00644615	29	-2.05174974	-3.35	5.67	2.34	23.70	-2.46	-1.49	-1.97
Rh	-82.05747347	15	-1.51832379	-3.95	5.68	2.57	22.60	-2.33	-2.05	-2.19
Ir	-108.21976711	5	-2.09035407	-5.12	5.12	2.54	23.90	-2.72	-2.63	-2.67
Ni	-60.19727779	12	-0.74168259	-3.27	5.95	2.37	23.30	-1.79	-1.31	-1.55
Pd	-60.07463851	8	-1.47706734	-2.53	5.94	2.68	23.50	-1.78	-1.67	-1.73
Pt	-69.78768599	2	-0.56262672	-4.09	4.96	2.61	24.20	-2.42	-2.37	-2.40
Cu	-40.66477641	1	-0.24479459	-2.47	5.89	2.46	22.70	-2.26	-2.24	-2.25
Ag	-40.66477641	1	-0.19876247	-1.81	5.44	2.81	23.90	-3.74	-3.71	-3.73
Au	-37.65507243	1	-0.18342837	-2.33	5.37	2.78	25.10	-2.84	-2.87	-2.85

Figure S1: Density of states (DOS) for the gas-phase TM_{15} clusters.

4 Gas-phase Alcohols

Table S3: Energetic and geometric properties of the alcohols: total energy, E_{tot} in eV; relative energy, ΔE_{tot} in meV; binding energy per atom, E_b in eV and bond length distances, C–C, C–O, C–H and O–H in Å.

Alcohol	E_{tot} (eV)	$\Delta E_{tot} \ (meV)$	E_b (eV)	d _{C-C} (Å)	d _{C-0} (Å)	d _{C-H} (Å)	d _{O-H} (Å)
methanol	-30.27209194		-3.76		1.429	1.098 1.105 1.105	0.970
ethanol (gauche)	-46.97724207	0	-3.96	1.522	1.434	1.100 1.107 1.102 1.099 1.101	0.972
ethanol (trans)	-46.97464546	3	-3.96	1.516	1.436	1.107 1.107 1.099 1.099 1.099	0.971
EG (isomer 1)	-53.46914161	0	-4.02	1.521	1.438 1.424	1.106 1.100 1.111 1.102	0.973 0.976
EG (isomer 2)	-53.33653696	133	-4.01	1.513	1.431 1.431	1.108 1.106 1.106 1.108	0.970 0.970

Figure S2: Effective charges in the alcohol molecules: methanol, ethanol and ethylene glycol.

Figure S3: Electronic states for methanol, ethanol and ethylene glycol in gas-phase.

5 All optimized structures for the adsorption of the methanol, ethanol and ethylene glycol on TM₁₅lusters

Figure S4: The Alcohols/Ag₁₅ configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S5: The Alcohols/Au₁₅ configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S6: The Alcohols/Co₁₅ configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S7: The Alcohols/Cu₁₅ configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S8: The Alcohols/Fe $_{15}$ configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S9: The Alcohols/Ni₁₅ configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S10: The Alcohols/Os $_{15}$ configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S11: The Alcohols/Rh₁₅ configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S12: The Alcohols/ Ru_{15} configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S13: The Alcohols/Pd₁₅ configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S14: The Alcohols/ Pt_{15} configurations and their relative energies in meV with respect to the lowest energy configuration.

Figure S15: The Alcohols/ Ir_{15} configurations and their relative energies in meV with respect to the lowest energy configuration.

Table S4: Energetic, geometric and electronic properties of the systems selected by *k-means* clustering algorithm: relative total energy, ΔE_{tot} (in meV), adsorption energy, E_{ad} (in eV), interaction energy, E_{int} (in eV), total magnetic moment, m_{tot} (in μ_B), change in average effective coordination number of the TM₁₅, ΔECN_{av} (in %), change in average weighted bond length of the TM₁₅, Δd_{av} (in %), shorter distances between the C, O, H (only that closer) atoms and a TM in the nanocluster, d_{C_1-TM} , d_{C_2-TM} , d_{O_1-TM} , d_{O_2-TM} and d_{H-TM} (Å) and change in the molecule charge, Q^{Mol} (in e).

System	ΔE_{tot}	$ E_{ad} E_{int} $	m _{tot}	ΔECN_{av}	Δd_{av}	d_{C_1-TN}	d_{C_2-TN}	d_{O_1-TM}	d_{O_2-TM}	$d_{\mathrm{H-TM}}$	Q^{Mol}
CH ₃ OH/Fe ₁₅	481	0.30 0.30	48	0.02	0.03	3.53	-	3.42	-	2.68	-0.10
CH ₃ OH/Fe ₁₅	191	0.58 0.65	48	-0.18	0.24	3.15	-	2.22	-	2.66	0.01
CH ₃ OH/Fe ₁₅	41	0.74 0.83	48	-0.22	0.36	3.11	-	2.20	-	2.55	0.02
CH ₃ OH/Fe ₁₅	0	0.78 0.82	48	-0.05	-0.06	3.07	-	2.08	-	2.51	0.03
C ₂ H ₅ OH/Fe ₁₅	512	0.34 0.35	48	0.05	0.03	3.53	3.39	3.50	-	2.49	-0.10
C ₂ H ₅ OH/Fe ₁₅	198	0.66 0.74	48	-0.20	0.23	3.19	3.61	2.22	-	2.68	0.00
C ₂ H ₅ OH/Fe ₁₅	26	0.83 0.93	48	-0.18	0.38	3.11	3.49	2.20	-	2.56	0.00
C ₂ H ₅ OH/Fe ₁₅	0	0.86 0.89	48	-0.04	-0.05	3.10	3.64	2.08	-	2.53	0.03
(CH ₂ OH) ₂ /Fe ₁₅	831	0.05 0.19	48	0.11	0.01	4.41	3.34	3.61	3.96	2.23	-0.03
(CH ₂ OH) ₂ /Fe ₁₅	135	0.74 0.98	48	-0.12	0.33	3.22	3.38	2.25	2.27	2.74	0.02
(CH ₂ OH) ₂ /Fe ₁₅	24	0.85 0.90	48	-0.05	-0.07	3.08	3.61	2.08	4.05	2.51	0.02
(CH ₂ OH) ₂ /Fe ₁₅	0	0.88 1.07	48	-0.15	0.36	3.31	3.49	2.21	3.38	2.43	-0.09
CH ₃ OH/Co ₁₅	241	0.60 0.68	27	-0.01	-0.18	3.03	-	2.03	-	2.46	0.05
CH ₃ OH/Co ₁₅	150	0.69 0.73	29	-0.46	-0.03	3.00	-	2.08	-	2.58	0.02
CH ₃ OH/Co ₁₅	123	0.72 0.74	29	0.00	0.04	3.05	-	2.07	-	2.52	0.04
CH ₃ OH/Co ₁₅	0	0.84 0.87	29	-0.22	-0.02	3.03	-	2.03	-	2.51	0.06
C ₂ H ₅ OH/Co ₁₅	453	0.46 0.50	29	-0.09	-0.03	3.35	2.98	3.51	-	2.54	-0.07
C ₂ H ₅ OH/Co ₁₅	225	0.69 0.77	27	-0.03	-0.19	3.04	3.44	2.02	-	2.46	0.05
C ₂ H ₅ OH/Co ₁₅	90	0.83 0.86	29	-0.07	0.02	3.06	3.69	2.05	-	2.56	0.03
C ₂ H ₅ OH/Co ₁₅	0	0.92 0.95	29	-0.24	-0.01	3.07	3.44	2.03	-	2.51	0.05
(CH ₂ OH) ₂ /Co ₁₅	334	0.69 0.83	29	-0.05	0.07	3.22	3.89	2.13	3.09	2.45	-0.06
(CH ₂ OH) ₂ /Co ₁₅	84	0.94 1.06	29	0.03	0.03	3.20	3.36	2.05	3.44	2.43	-0.04
(CH ₂ OH) ₂ /Co ₁₅	84	0.94 1.10	27	0.00	-0.12	3.01	3.16	2.10	2.12	2.25	0.02

					Continu	ation of	Table 5					
System	ΔE_{tot}	$ E_{ad} E$	E _{int} r	n _{tot}	ΔECN _{av}	Δd_{av}	$d_{\rm C_1-TM}$	d_{C_2-TM}	$d_{\rm O_1-TM}$	$d_{\rm O_2-TM}$	$d_{\rm H-TM}$	Q^{Mol}
(CH ₂ OH) ₂ /Co ₁₅	0	1.02 1.	.10	29	-0.19	0.00	3.07	3.20	2.04	3.34	2.40	-0.01
CH ₃ OH/Ni ₁₅	279	0.49 0.	.58	12	-0.71	0.30	3.03	-	2.11	-	2.45	0.03
CH ₃ OH/Ni ₁₅	83	0.68 0.	.76	12	-0.06	0.13	2.97	-	2.05	-	2.44	0.04
CH ₃ OH/Ni ₁₅	59	0.71 0.	.76	12	-0.12	0.45	3.00	-	2.06	-	2.60	0.05
CH ₃ OH/Ni ₁₅	0	0.77 0.	.81	12	-0.26	0.18	2.98	-	2.05	-	2.32	0.02
C ₂ H ₅ OH/Ni ₁₅	302	0.57 0.	.66	12	-0.78	0.46	3.11	3.55	2.13	-	2.41	0.01
C ₂ H ₅ OH/Ni ₁₅	130	0.74 0.	.91	12	-0.44	0.69	3.19	3.43	2.16	-	2.37	0.00
C ₂ H ₅ OH/Ni ₁₅	104	0.77 0.	.85	12	-0.08	0.16	3.03	3.34	2.05	-	2.46	0.04
C ₂ H ₅ OH/Ni ₁₅	0	0.87 0.	.90	12	-0.02	0.08	3.01	3.48	2.03	-	2.49	0.04
(CH ₂ OH) ₂ /Ni ₁₅	154	0.73 0.	.86	12	-0.09	0.17	3.11	3.56	2.05	3.34	2.46	-0.02
(CH ₂ OH) ₂ /Ni ₁₅	19	0.87 0.	.90	12	-0.01	0.08	3.00	3.50	2.04	3.98	2.47	0.04
(CH ₂ OH) ₂ /Ni ₁₅	12	0.87 0.	.99	12	0.00	0.23	3.14	3.33	2.02	3.31	2.47	-0.02
(CH ₂ OH) ₂ /Ni ₁₅	0	0.88 1.	.09	12	-0.73	0.71	3.19	3.13	2.20	2.26	2.35	0.00
CH ₃ OH/Cu ₁₅	351	0.35 0.	.36	1	0.06	0.00	3.34	-	3.33	-	2.61	-0.08
CH ₃ OH/Cu ₁₅	252	0.47 0.	.51	1	0.35	0.13	3.08	-	2.15	-	2.58	0.01
CH ₃ OH/Cu ₁₅	92	0.61 0.	.63	1	-0.24	-0.04	2.94	-	2.07	-	2.57	0.05
CH ₃ OH/Cu ₁₅	0	0.70 0.	.73	1	0.18	0.033	2.96	-	2.07	-	2.58	0.04
C ₂ H ₅ OH/Cu ₁₅	247	0.56 0.	.60	1	0.33	0.13	3.08	3.48	2.14	-	2.53	0.01
C ₂ H ₅ OH/Cu ₁₅	171	0.63 0.	.67	1	0.75	0.15	3.02	3.61	2.09	-	2.65	0.03
C ₂ H ₅ OH/Cu ₁₅	99	0.70 0.	.73	1	-0.29	-0.05	2.95	3.38	2.48	-	2.58	0.04
C ₂ H ₅ OH/Cu ₁₅	0	0.80 0.	.85	1	0.36	0.04	3.01	3.57	2.06	-	2.58	0.03
(CH ₂ OH) ₂ /Cu ₁₅	370	0.58 0.	.93	1	1.73	0.17	3.14	3.14	2.24	2.28	2.44	0.02
(CH ₂ OH) ₂ /Cu ₁₅	142	0.81 0.	.97	1	0.95	0.22	3.12	3.27	2.18	2.19	2.56	0.00
(CH ₂ OH) ₂ /Cu ₁₅	118	0.83 0.	.88	1	0.39	0.05	2.98	3.53	2.06	4.14	2.53	0.03
(CH ₂ OH) ₂ /Cu ₁₅	0	0.95 1.	.05	1	1.09	0.11	3.08	3.39	2.08	3.31	2.39	-0.01
CH ₃ OH/Ru ₁₅	352	0.12 0.	.53	2	-0.14	-0.03	2.57	-	3.38	-	2.16	-0.03
CH ₃ OH/Ru ₁₅	283	0.55 0.	.87	4	-2.66	-0.59	3.18	-	2.21	-	2.59	0.04

				Continu	ation of	Table 5					
System	ΔE_{tot}	$ E_{ad} E_{in}$	$t m_{t} $	$_{ot} \Delta \text{ECN}_{av}$	Δd_{av}	$d_{\rm C_1-TM}$	d_{C_2-TM}	d_{O_1-TM}	d_{O_2-TN}	$d_{\rm H-TM}$	Q^{Mol}
CH ₃ OH/Ru ₁₅	196	0.46 0.9	42	0.05	0.06	3.25	-	2.25	-	2.63	0.03
CH ₃ OH/Ru ₁₅	0	0.75 0.9	74	-10.03	-1.60	3.18	-	2.21	-	2.60	0.06
C ₂ H ₅ OH/Ru ₁₅	586	0.23 0.4	8 2	0.18	0.05	3.13	3.39	3.61	-	2.11	-0.04
C ₂ H ₅ OH/Ru ₁₅	337	0.48 0.9	16	-1.98	-0.38	3.28	3.79	2.22	-	2.62	0.04
C ₂ H ₅ OH/Ru ₁₅	187	0.63 1.0	92	0.53	-0.04	3.17	3.63	2.18	-	2.65	0.07
C ₂ H ₅ OH/Ru ₁₅	0	0.81 1.0	64	-9.94	-1.60	3.22	3.52	2.21	-	2.53	0.05
(CH ₂ OH) ₂ /Ru ₁₅	143	0.58 1.0	62	-6.83	-1.21	3.30	3.21	2.19	3.86	2.14	0.06
$(CH_2OH)_2/Ru_{15}$	20	0.70 1.3	3 2	-0.04	0.09	3.29	3.51	2.27	2.36	2.64	0.06
$(CH_2OH)_2/Ru_{15}$	7	0.72 1.2	4 4	-3.28	-0.56	3.22	3.48	2.25	2.36	2.43	0.01
(CH ₂ OH) ₂ /Ru ₁₅	0	0.72 1.0	4 2	-0.14	0.06	3.30	3.48	2.24	3.63	2.59	-0.03
CH ₃ OH/Rh ₁₅	342	0.36 0.4	1 11	-0.05	-0.22	3.30	-	2.34	-	2.57	0.03
CH ₃ OH/Rh ₁₅	144	0.52 0.6	09	-0.07	-0.31	3.14	-	2.20	-	2.53	0.06
CH ₃ OH/Rh ₁₅	50	0.65 0.7	0 11	-0.34	-0.29	3.19	-	2.23	-	2.49	0.07
CH ₃ OH/Rh ₁₅	0	0.70 0.7	99	-0.28	-0.32	3.16	-	2.20	-	2.49	0.06
C ₂ H ₅ OH/Rh ₁₅	356	0.44 0.5	1 11	-0.07	-0.21	3.32	3.27	2.36	-	2.55	0.04
C ₂ H ₅ OH/Rh ₁₅	206	0.59 0.6	89	0.01	-0.30	3.18	3.57	2.21	-	2.54	0.07
C ₂ H ₅ OH/Rh ₁₅	73	0.72 0.7	8 11	-0.33	-0.30	3.21	3.42	2.22	-	2.51	0.07
C ₂ H ₅ OH/Rh ₁₅	0	0.80 0.9	09	-0.20	-0.30	3.18	3.73	2.19	-	2.68	0.06
(CH ₂ OH) ₂ /Rh ₁₅	402	0.66 0.9	09	-0.76	-0.25	3.26	3.46	2.27	2.35	2.44	0.07
(CH ₂ OH) ₂ /Rh ₁₅	295	0.76 1.0	69	0.04	-0.20	3.15	3.30	2.24	2.24	2.48	0.11
(CH ₂ OH) ₂ /Rh ₁₅	234	0.82 0.9	6 11	-0.34	-0.25	3.23	3.51	2.27	2.48	2.45	0.05
(CH ₂ OH) ₂ /Rh ₁₅	0	1.06 1.2	29	-0.19	-0.27	3.22	3.32	2.20	3.54	2.51	0.02
CH ₃ OH/Pd ₁₅	106	0.48 0.5	0 8	-0.18	-0.04	3.25	-	2.33	-	2.59	0.05
CH ₃ OH/Pd ₁₅	70	0.51 0.5	38	-0.18	0.04	3.19	-	2.33	-	2.83	0.06
CH ₃ OH/Pd ₁₅	2	0.58 0.5	98	0.03	0.03	3.20	-	2.28	-	2.59	0.07
CH ₃ OH/Pd ₁₅	0	0.58 0.6	1 8	-0.13	-0.11	3.26	-	2.29	-	2.50	0.05
C ₂ H ₅ OH/Pd ₁₅	265	0.40 0.4	38	-0.04	0.09	3.40	3.51	2.42	-	2.74	0.04

					Continu	ation of	Table 5					
System	ΔE_{tot}	$ E_{ad} $	$E_{int} $	m _{tot}	ΔECN_{av}	Δd_{av}	d_{C_1-TM}	$d_{\rm C_2-TM}$	$d_{\rm O_1-TM}$	$d_{\rm O_2-TM}$	$d_{\mathrm{H-TM}}$	Q^{Mol}
C ₂ H ₅ OH/Pd ₁₅	124	0.54	0.57	8	-0.22	-0.04	3.33	3.67	2.32	-	2.61	0.04
C ₂ H ₅ OH/Pd ₁₅	65	0.60	0.63	8	-0.14	0.06	3.25	3.48	2.32	-	2.72	0.06
C ₂ H ₅ OH/Pd ₁₅	0	0.67	0.68	8	0.09	0.06	3.26	3.53	2.28	-	2.60	0.07
(CH ₂ OH) ₂ /Pd ₁₅	346	0.49	0.71	8	-0.04	0.07	3.29	3.56	2.33	2.63	2.60	0.07
(CH ₂ OH) ₂ /Pd ₁₅	210	0.63	0.74	8	-0.08	0.08	3.37	3.37	2.31	3.29	2.36	0.01
(CH ₂ OH) ₂ /Pd ₁₅	38	0.80	0.88	8	-0.18	-0.04	3.25	3.51	2.28	3.29	2.35	0.02
(CH ₂ OH) ₂ /Pd ₁₅	0	0.84	0.90	8	-0.04	0.03	3.26	3.45	2.31	3.32	2.51	0.00
CH ₃ OH/Ag ₁₅	45	0.32	0.33	1	-0.02	0.01	3.48	-	2.59	-	2.73	0.00
CH ₃ OH/Ag ₁₅	31	0.33	0.34	1	-0.08	0.01	3.43	-	2.55	-	2.74	0.00
CH ₃ OH/Ag ₁₅	18	0.35	0.36	1	-0.03	0.02	3.40	-	2.55	-	2.83	0.01
CH ₃ OH/Ag ₁₅	0	0.36	0.37	1	0.09	-0.02	3.33	-	2.47	-	2.85	0.03
C ₂ H ₅ OH/Ag ₁₅	46	0.38	0.40	1	-0.02	-0.02	3.36	3.91	2.49	-	2.97	0.02
C ₂ H ₅ OH/Ag ₁₅	42	0.39	0.40	1	-0.07	0.00	3.38	3.79	2.52	-	2.83	0.01
C ₂ H ₅ OH/Ag ₁₅	24	0.40	0.42	1	0.00	-0.01	3.42	3.73	2.53	-	2.84	0.01
C ₂ H ₅ OH/Ag ₁₅	0	0.43	0.44	1	0.07	-0.02	3.28	3.75	2.48	-	2.91	0.02
(CH ₂ OH) ₂ /Ag ₁₅	256	0.30	0.45	1	0.05	-0.02	3.32	3.79	2.50	4.70	2.91	0.02
(CH ₂ OH) ₂ /Ag ₁₅	162	0.39	0.42	1	-0.03	-0.01	3.34	3.88	2.51	4.52	2.95	0.02
(CH ₂ OH) ₂ /Ag ₁₅	90	0.47	0.51	1	-0.06	0.01	3.42	3.75	2.58	2.77	2.81	0.00
(CH ₂ OH) ₂ /Ag ₁₅	0	0.56	0.61	1	0.02	-0.03	3.42	3.77	2.48	3.32	2.64	-0.01
CH ₃ OH/Os ₁₅	730	0.35	0.37	2	-0.32	0.02	3.67	-	3.82	-	2.90	-0.06
CH ₃ OH/Os ₁₅	296	0.78	1.12	4	-2.57	-0.06	3.20	-	2.32	-	2.64	0.06
CH ₃ OH/Os ₁₅	63	1.02	1.21	0	-0.56	-0.01	3.12	-	2.14	-	2.65	0.11
CH ₃ OH/Os ₁₅	0	1.08	1.14	4	-0.53	0.03	3.10	-	2.15	-	2.53	0.10
C ₂ H ₅ OH/Os ₁₅	809	0.39	0.49	0	-0.69	0.00	3.71	3.15	3.77	-	2.14	-0.03
C ₂ H ₅ OH/Os ₁₅	305	0.89	1.17	4	-1.40	-0.04	3.20	3.68	2.13	-	2.61	0.08
C ₂ H ₅ OH/Os ₁₅	64	1.13	1.26	2	-0.35	-0.01	3.13	3.69	2.11	-	2.64	0.12
C ₂ H ₅ OH/Os ₁₅	0	1.20	1.29	4	-0.56	0.02	3.16	3.45	2.15	-	2.54	0.10

					Continu	ation of	Table 5					
System	ΔE_{tot}	$ E_{ad} I$	$E_{int} r$	n _{tot}	ΔECN_{av}	Δd_{av}	d_{C_1-TM}	$d_{\rm C_2-TM}$	$d_{\rm O_1-TM}$	$d_{\rm O_2-TM}$	$d_{\rm H-TM}$	Q^{Mol}
(CH ₂ OH) ₂ /Os ₁₅	280	0.97 1	.29	2	-1.57	-0.08	3.18	3.66	2.14	4.06	2.58	0.08
(CH ₂ OH) ₂ /Os ₁₅	195	1.05 1	.37	2	0.34	0.10	3.20	3.48	2.14	3.65	2.49	0.06
(CH ₂ OH) ₂ /Os ₁₅	51	1.20 1	.39	2	0.03	0.08	3.22	3.67	2.17	3.64	2.66	0.05
(CH ₂ OH) ₂ /Os ₁₅	0	1.25 1	.42	4	-0.55	0.07	3.20	3.56	2.20	3.72	2.57	0.02
CH ₃ OH/Ir ₁₅	335	0.49 0).64	1	-0.62	-0.02	2.85	-	3.33	-	1.92	0.05
CH ₃ OH/Ir ₁₅	122	0.70 0).81	3	-1.15	-0.04	3.21	-	2.24	-	2.60	0.09
CH ₃ OH/Ir ₁₅	6	0.82 0).94	3	-0.76	-0.04	3.23	-	2.20	-	2.73	0.09
CH ₃ OH/Ir ₁₅	0	0.82 0).99	3	1.12	0.24	3.16	-	2.17	-	2.49	0.08
C ₂ H ₅ OH/Ir ₁₅	285	0.58 0).68	3	-0.60	-0.02	3.05	3.43	3.36	-	1.98	0.06
C ₂ H ₅ OH/Ir ₁₅	109	0.76 0).89	3	-1.19	-0.04	3.26	3.51	2.24	-	2.60	0.09
C ₂ H ₅ OH/Ir ₁₅	12	0.86 0).96	1	-0.39	-0.03	3.22	3.81	2.14	-	2.55	0.11
C ₂ H ₅ OH/Ir ₁₅	0	0.87 1	.01	1	-0.74	-0.05	3.22	3.93	2.19	-	2.72	0.10
(CH ₂ OH) ₂ /Ir ₁₅	254	0.73 0).94	1	-1.13	-0.02	3.39	3.50	2.25	3.30	2.33	0.03
(CH ₂ OH) ₂ /Ir ₁₅	68	0.91 1	.31	1	-1.35	0.00	3.20	3.10	2.28	2.42	2.54	0.12
(CH ₂ OH) ₂ /Ir ₁₅	35	0.98 1	.23	3	-1.34	-0.01	3.22	3.07	2.23	3.38	2.06	0.07
(CH ₂ OH) ₂ /Ir ₁₅	0	1.02 1	.36	3	-0.78	0.00	3.17	3.33	2.24	2.35	2.50	0.13
CH ₃ OH/Pt ₁₅	141	0.77 0).80	2	0.27	0.10	3.17	-	2.28	-	2.68	0.10
CH ₃ OH/Pt ₁₅	83	0.83 1	.01	2	2.75	0.29	3.08	-	2.18	-	2.48	0.12
CH ₃ OH/Pt ₁₅	73	0.84 0).95	0	0.43	0.05	3.15	-	2.22	-	2.67	0.12
CH ₃ OH/Pt ₁₅	0	0.91 1	.06	2	2.28	0.26	3.10	-	2.19	-	2.51	0.12
C ₂ H ₅ OH/Pt ₁₅	393	0.61 0).69	2	0.14	0.15	3.20	3.39	2.29	-	2.56	0.11
C ₂ H ₅ OH/Pt ₁₅	89	0.91 1	.12	2	2.98	0.33	3.13	3.64	2.17	-	2.52	0.13
C ₂ H ₅ OH/Pt ₁₅	45	0.95 1	.09	0	0.42	0.04	3.19	3.58	2.21	-	2.55	0.12
C ₂ H ₅ OH/Pt ₁₅	0	1.00 1	.16	2	2.38	0.27	3.20	3.51	2.18	-	2.51	0.12
(CH ₂ OH) ₂ /Pt ₁₅	407	0.78 1	.01	2	-0.92	-0.07	3.31	3.18	2.40	2.54	2.45	0.11
(CH ₂ OH) ₂ /Pt ₁₅	125	1.06 1	.29	2	0.87	0.11	3.31	3.21	2.26	2.34	2.53	0.13
(CH ₂ OH) ₂ /Pt ₁₅	72	1.12 1	.36	0	0.45	0.07	3.16	3.41	3.16	3.68	2.41	0.10

					Continu	ation of	Table 5	i				
System	ΔE_{tot}	$ E_{ad} E$	int m	n_{tot}	ΔECN_{av}	Δd_{av}	d_{C_1-TM}	d_{C_2-TM}	$d_{\rm O_1-TM}$	$d_{\rm O_2-TM}$	$d_{\rm H-TM}$	Q^{Mol}
(CH ₂ OH) ₂ /Pt ₁₅	0	1.19 1.	40	2	2.40	0.28	3.17	3.45	2.18	3.39	2.44	0.08
CH ₃ OH/Au ₁₅	119	0.29 0.	32	1	-0.38	0.05	3.23	-	3.17	-	2.18	0.03
CH ₃ OH/Au ₁₅	29	0.38 0.	61	1	-6.38	-0.41	3.32	-	2.38	-	2.66	0.08
CH ₃ OH/Au ₁₅	11	0.40 0.	42	1	-0.28	0.01	3.25	-	2.46	-	2.97	0.07
CH ₃ OH/Au ₁₅	0	0.41 0.	46	1	-0.70	0.06	3.34	-	2.44	-	2.73	0.07
C ₂ H ₅ OH/Au ₁₅	27	0.46 0.	52	1	-0.68	0.079	3.46	3.75	2.44	-	2.72	0.07
C ₂ H ₅ OH/Au ₁₅	24	0.46 0.	67	1	-5.85	-0.37	3.36	3.52	2.38	-	2.71	0.09
C ₂ H ₅ OH/Au ₁₅	6	0.48 0.	50	1	-0.12	0.01	3.29	3.76	2.47	-	2.97	0.07
C ₂ H ₅ OH/Au ₁₅	0	0.49 0.	54	1	-0.77	0.07	3.33	3.64	2.42	-	2.71	0.08
(CH ₂ OH) ₂ /Au ₁₅	; 310	0.29 0.	56	1	-6.09	-0.38	3.31	3.75	2.44	4.61	2.77	0.08
(CH ₂ OH) ₂ /Au ₁₅	; 118	0.48 0.	53	1	-0.41	0.07	3.17	3.76	3.13	3.49	2.10	0.04
(CH ₂ OH) ₂ /Au ₁₅	; 42	0.56 0.	84	1	-5.86	-0.36	3.42	3.63	2.42	2.70	2.62	0.10
(CH ₂ OH) ₂ /Au ₁₅	; 0	0.60 0.	71	1	-0.84	0.05	3.38	3.57	2.45	3.53	2.66	0.05

Table S5: Percentage changes in bond lengths, Δd_0 (%), from the molecules in the methanol, ethanol and ethylene glycol adsorbed on the 3*d*, 4*d*, 5*d* TM₁₅ clusters.

d_0								d_0								
		Metha	nol/Fe ₁₅	5		Methar	nol/Co ₁	5		Metha	nol/Ni ₁₅	i	Methanol/Cu ₁₅			
O-H	0.48	0.63	0.48	1.63	0.37	0.29	0.53	0.52	1.44	0.27	0.50	0.72	0.29	0.41	0.56	1.41
C-0	1.54	1.64	1.51	-0.18	1.76	1.45	1.95	1.72	1.75	1.73	1.48	1.25	1.76	1.83	1.32	-0.60
C-H	-0.29	-0.21	-0.25	0.42	-0.73	-0.63	-0.65	-0.65	-0.18	-0.65	-0.28	-0.11	-0.55	-0.62	-0.23	1.01
C-H	-0.65	-0.32	-0.26	0.37	-0.36	-0.19	-0.26	-0.29	-0.63	-0.33	-0.63	-0.50	-0.23	-0.31	-0.22	-0.30
C-H	-0.29	-0.66	-0.63	-0.35	-0.34	-0.22	-0.25	-0.24	-0.23	-0.31	-0.28	-0.19	-0.26	-0.35	-0.47	0.23
		Ethan	ol/Fe ₁₅			Ethan	ol/Co ₁₅	ol/Co ₁₅ Ethanol/Ni ₁₅						Ethan	ol/Cu ₁₅	
O-H	1.47	1.52	1.42	2.63	1.36	1.38	1.53	2.72	1.48	1.39	2.72	1.69	1.32	1.37	1.28	1.54
C-0	1.59	1.73	1.45	-0.71	1.83	1.45	1.74	-1.11	1.77	1.69	1.30	1.16	1.75	1.80	1.33	1.10
C-C	-0.50	-0.68	-0.37	0.18	-0.38	-0.46	-0.43	0.22	-0.40	-0.70	-0.22	-0.74	-0.48	-0.32	-0.38	-0.32
C-H	-0.35	-0.07	0.03	-0.10	-0.10	0.00	-0.01	0.00	-0.39	0.01	-0.31	0.42	0.00	0.02	0.02	-0.15
C-H	-0.08	0.17	-0.36	0.61	-0.39	-0.25	-0.32	0.61	0.05	0.06	0.03	0.05	-0.10	-0.34	-0.12	0.06

						(Continu	ation of	Table	S5						
d_0								Δ	d_0							
C-H	0.04	0.21	0.27	0.64	-0.11	0.13	-0.08	1.95	0.19	-0.23	-0.08	0.28	0.02	0.05	-0.18	0.25
C-H	-0.12	-0.29	-0.14	-0.28	0.02	-0.02	0.04	-0.21	-0.17	0.09	-0.10	-0.29	0.18	-0.06	-0.03	-0.09
C-H	-0.23	-0.29	-0.07	-0.12	-0.10	-0.15	-0.16	-0.12	-0.05	-0.21	0.10	-0.26	-0.12	-0.15	0.01	-0.22
	Eth	ylene (Glycol/I	Fe ₁₅	Eth	ylene C	Glycol/C	Co ₁₅	Eth	nylene (Glycol/I	Ni ₁₅	Eth	ylene C	lycol/C	Cu ₁₅
O-H	1.24	1.24	0.27	-0.15	0.57	0.48	-0.01	0.66	1.88	-0.05	1.10	0.36	1.11	1.22	0.47	0.13
O-H	0.01	0.01	0.19	-0.04	1.73	1.94	2.13	1.98	1.29	1.53	0.03	1.96	1.53	0.10	1.78	0.13
C-0	1.31	1.31	0.76	-0.14	2.24	1.80	2.20	1.33	1.14	1.85	1.42	1.66	1.44	1.40	0.83	1.11
C-0	0.21	0.21	0.77	-0.89	-0.74	1.23	-1.23	-1.19	0.80	-1.01	0.22	-1.27	-0.32	0.39	0.66	1.51
C-C	0.00	0.00	-0.29	-0.48	0.15	-0.43	-0.09	0.11	-0.42	-0.15	-0.08	0.07	0.19	-0.03	-0.09	0.85
C-H	0.06	0.06	-0.06	0.30	-0.29	-0.04	-0.20	-0.02	-0.14	0.05	0.08	-0.36	-0.16	0.01	0.04	0.04
C-H	-0.42	-0.42	-0.28	0.16	-0.40	0.23	-0.08	-0.30	-0.42	-0.17	-0.45	-0.10	-0.47	-0.25	-0.04	-0.14
C-H	-0.03	0.10	0.09	1.76	-0.09	-0.21	0.60	-0.07	0.07	0.65	0.28	0.71	-0.06	0.12	0.10	0.47
C-H	0.10	-0.03	0.17	0.35	0.42	-0.41	-0.09	0.64	0.35	-0.02	-0.07	-0.12	0.27	-0.10	-0.20	-0.14
_																
		Metha	nol/Ru ₁	5		Methar	ol/Rh _{1:}	5		Metha	nol/Pd ₁₅	5		Methan	ol/Ag ₁₅	5
O-H	0.51	Methar	0.86	5	1.03	Methar	0.89	5 0.75	1.04	Methar	0.23	0.70	0.31	Methan	0.65	5 0.66
О-Н С-О	0.51	Methar 0.54 1.37	nol/Ru ₁₁ 0.86 1.64	5 1.68 -1.84	1.03	Methar 0.94 1.59	0.89 1.42	5 0.75 1.01	1.04	Methar 0.41 1.35	0.23 1.38	0.70 1.04	0.31	Methan 0.38 0.73	0.65 0.82	5 0.66 0.63
О-Н С-О С-Н	0.51 1.89 -0.24	Methar 0.54 1.37 -0.16	nol/Ru ₁ 0.86 1.64 -0.26	5 1.68 -1.84 3.15	1.03 1.51 -0.19	Methan 0.94 1.59 -0.33	0.89 1.42 -0.66	0.75 1.01 -0.10	1.04 1.19 -0.06	Methan 0.41 1.35 -0.21	0.23 1.38 -0.18	0.70 1.04 -0.21	0.31 1.01 -0.10	Methan 0.38 0.73 -0.01	0.65 0.82 -0.14	5 0.66 0.63 -0.10
О-Н С-О С-Н С-Н	0.51 1.89 -0.24 -0.21	Methan 0.54 1.37 -0.16 -0.71	0.86 1.64 -0.26 -0.66	5 1.68 -1.84 3.15 2.23	1.03 1.51 -0.19 -0.62	Methan 0.94 1.59 -0.33 -0.21	0.89 1.42 -0.66 -0.21	0.75 1.01 -0.10 -0.57	1.04 1.19 -0.06 -0.21	Methan 0.41 1.35 -0.21 -0.67	0.23 1.38 -0.18 -0.62	0.70 1.04 -0.21 -0.62	0.31 1.01 -0.10 -0.55	Methan 0.38 0.73 -0.01 -0.53	0.65 0.82 -0.14 -0.51	0.66 0.63 -0.10 -0.56
О–Н С–О С–Н С–Н С–Н	0.51 1.89 -0.24 -0.21 -0.63	Methan 0.54 1.37 -0.16 -0.71 -0.29	0.86 1.64 -0.26 -0.66 -0.25	5 1.68 -1.84 3.15 2.23 -0.34	1.03 1.51 -0.19 -0.62 -0.20	Methan 0.94 1.59 -0.33 -0.21 -0.61	0.89 1.42 -0.66 -0.21 -0.18	0.75 1.01 -0.10 -0.57 -0.18	1.04 1.19 -0.06 -0.21 -0.66	Methan 0.41 1.35 -0.21 -0.67 -0.23	0.23 1.38 -0.18 -0.62 -0.14	0.70 1.04 -0.21 -0.62 -0.13	0.31 1.01 -0.10 -0.55 -0.18	Methan 0.38 0.73 -0.01 -0.53 -0.10	0.65 0.82 -0.14 -0.51 0.03	5 0.66 0.63 -0.10 -0.56 0.22
О–Н С–О С–Н С–Н С–Н	0.51 1.89 -0.24 -0.21 -0.63	Methan 0.54 1.37 -0.16 -0.71 -0.29 Ethan	0.86 1.64 -0.26 -0.66 -0.25 ol/Ru ₁₅	5 1.68 -1.84 3.15 2.23 -0.34	1.03 1.51 -0.19 -0.62 -0.20	Methan 0.94 1.59 -0.33 -0.21 -0.61 Ethano	0.89 1.42 -0.66 -0.21 -0.18	0.75 1.01 -0.10 -0.57 -0.18	1.04 1.19 -0.06 -0.21 -0.66	Methan 0.41 1.35 -0.21 -0.67 -0.23 Ethan	0.23 1.38 -0.18 -0.62 -0.14 0l/Pd ₁₅	0.70 1.04 -0.21 -0.62 -0.13	0.31 1.01 -0.10 -0.55 -0.18	Methan 0.38 0.73 -0.01 -0.53 -0.10 Ethano	0.65 0.82 -0.14 -0.51 0.03	5 0.66 0.63 -0.10 -0.56 0.22
О-H С-О С-H С-H С-H	0.51 1.89 -0.24 -0.21 -0.63 1.39	Methan 0.54 1.37 -0.16 -0.71 -0.29 Ethan 1.50	0.86 1.64 -0.26 -0.66 -0.25 ol/Ru ₁₅	5 1.68 -1.84 3.15 2.23 -0.34 2.77	1.03 1.51 -0.19 -0.62 -0.20	Methan 0.94 1.59 -0.33 -0.21 -0.61 Ethano 1.80	0.89 1.42 -0.66 -0.21 -0.18 bl/Rh ₁₅	0.75 1.01 -0.10 -0.57 -0.18 1.78	1.04 1.19 -0.06 -0.21 -0.66	Methan 0.41 1.35 -0.21 -0.67 -0.23 Ethan 1.18	0.23 1.38 -0.18 -0.62 -0.14 0l/Pd ₁₅	0.70 1.04 -0.21 -0.62 -0.13 1.44	0.31 1.01 -0.10 -0.55 -0.18	Methan 0.38 0.73 -0.01 -0.53 -0.10 Ethano 1.22	0.65 0.82 -0.14 -0.51 0.03 bl/Ag ₁₅ 1.25	5 0.66 0.63 -0.10 -0.56 0.22 1.23
О-H С-О С-H С-H С-H О-H С-О	0.51 1.89 -0.24 -0.21 -0.63 1.39 2.13	Methan 0.54 1.37 -0.16 -0.71 -0.29 Ethan 1.50 2.23	$ \begin{array}{r} nol/Ru_{1,} \\ \hline 0.86 \\ 1.64 \\ -0.26 \\ -0.66 \\ -0.25 \\ \hline 0l/Ru_{15} \\ \hline 1.56 \\ 1.47 \\ $	5 1.68 -1.84 3.15 2.23 -0.34 2.77 -2.39	1.03 1.51 -0.19 -0.62 -0.20	Methan 0.94 1.59 -0.33 -0.21 -0.61 Ethano 1.80 1.58		0.75 1.01 -0.10 -0.57 -0.18 1.78 0.89	1.04 1.19 -0.06 -0.21 -0.66 1.44 1.27	Methan 0.41 1.35 -0.21 -0.67 -0.23 Ethan 1.18 1.54	$ \begin{array}{r} \text{nol/Pd}_{1:} \\ \hline 0.23 \\ 1.38 \\ -0.18 \\ -0.62 \\ -0.14 \\ \hline 0l/Pd_{15} \\ \overline{1.71} \\ 0.87 \\ \end{array} $	0.70 1.04 -0.21 -0.62 -0.13 1.44 0.52	0.31 1.01 -0.10 -0.55 -0.18 1.23 0.80	Methan 0.38 0.73 -0.01 -0.53 -0.10 Ethanc 1.22 0.59	0.65 0.82 -0.14 -0.51 0.03 01/Ag ₁₅ 1.25 0.88	5 0.66 0.63 -0.10 -0.56 0.22 1.23 0.55
О-H С-O С-H С-H С-H О-H С-O С-C	0.51 1.89 -0.24 -0.21 -0.63 1.39 2.13 -0.78	Methan 0.54 1.37 -0.16 -0.71 -0.29 Ethan 1.50 2.23 -0.51	$ nol/Ru_{1.} 0.86 1.64 -0.26 -0.66 -0.25 ol/Ru_{15} 1.56 1.47 -0.44 $	5 1.68 -1.84 3.15 2.23 -0.34 2.77 -2.39 -0.19	1.03 1.51 -0.19 -0.62 -0.20 1.33 1.75 -0.49	Methan 0.94 1.59 -0.33 -0.21 -0.61 Ethano 1.80 1.58 -0.27		0.75 1.01 -0.10 -0.57 -0.18 1.78 0.89 -0.66	1.04 1.19 -0.06 -0.21 -0.66 1.44 1.27 -0.31	Methan 0.41 1.35 -0.21 -0.67 -0.23 Ethan 1.18 1.54 -0.64	$ \begin{array}{r} \text{nol/Pd}_{1:} \\ \hline 0.23 \\ 1.38 \\ -0.18 \\ -0.62 \\ -0.14 \\ \hline 0l/Pd_{15} \\ 1.71 \\ 0.87 \\ -0.27 \\ \end{array} $	0.70 1.04 -0.21 -0.62 -0.13 1.44 0.52 -0.26	0.31 1.01 -0.10 -0.55 -0.18 1.23 0.80 -0.17	Methan 0.38 0.73 -0.01 -0.53 -0.10 Ethanc 1.22 0.59 -0.48	$ \begin{array}{r} \text{ool/Ag}_{12} \\ \hline 0.65 \\ 0.82 \\ -0.14 \\ -0.51 \\ 0.03 \\ \hline 0l/Ag_{15} \\ 1.25 \\ 0.88 \\ -0.53 \\ \end{array} $	5 0.66 0.63 -0.10 -0.56 0.22 1.23 0.55 -0.28
О-H С-O С-H С-H С-H О-H С-O С-C С-C	0.51 1.89 -0.24 -0.21 -0.63 1.39 2.13 -0.78 -0.01	Methan 0.54 1.37 -0.16 -0.71 -0.29 Ethan 1.50 2.23 -0.51 -0.05	$nol/Ru_{1.}$ 0.86 1.64 -0.26 -0.66 -0.25 0l/Ru_{15} 1.56 1.47 -0.44 0.04	5 1.68 -1.84 3.15 2.23 -0.34 2.77 -2.39 -0.19 4.34	1.03 1.51 -0.19 -0.62 -0.20 1.33 1.75 -0.49 -0.21	Methan 0.94 1.59 -0.33 -0.21 -0.61 Ethanc 1.80 1.58 -0.27 0.02		0.75 1.01 -0.10 -0.57 -0.18 1.78 0.89 -0.66 0.11	1.04 1.19 -0.06 -0.21 -0.66 1.44 1.27 -0.31 -0.32	Methan 0.41 1.35 -0.21 -0.67 -0.23 Ethan 1.18 1.54 -0.64 0.06	$\begin{array}{c} \text{nol/Pd}_{1:} \\ \hline 0.23 \\ 1.38 \\ -0.18 \\ -0.62 \\ -0.14 \\ \hline \text{ol/Pd}_{15} \\ \hline 1.71 \\ 0.87 \\ -0.27 \\ 0.15 \end{array}$	0.70 1.04 -0.21 -0.62 -0.13 1.44 0.52 -0.26 0.24	0.31 1.01 -0.10 -0.55 -0.18 1.23 0.80 -0.17 0.13	Methan 0.38 0.73 -0.01 -0.53 -0.10 Ethanc 1.22 0.59 -0.48 0.17	$ \begin{array}{r} \text{ool/Ag}_{12} \\ \hline 0.65 \\ 0.82 \\ -0.14 \\ -0.51 \\ 0.03 \\ \hline 01/Ag_{15} \\ 1.25 \\ 0.88 \\ -0.53 \\ 0.16 \\ \end{array} $	5 0.66 0.63 -0.10 -0.56 0.22 1.23 0.55 -0.28 0.16
О-H С-O С-H С-H С-H О-H С-O С-C С-C С-H С-H	$0.51 \\ 1.89 \\ -0.24 \\ -0.21 \\ -0.63 \\ 1.39 \\ 2.13 \\ -0.78 \\ -0.01 \\ -0.02 \\ $	Methan 0.54 1.37 -0.16 -0.71 -0.29 Ethan 1.50 2.23 -0.51 -0.05 -0.38	$nol/Ru_{1.}$ 0.86 1.64 -0.26 -0.66 -0.25 0l/Ru_{15} 1.56 1.47 -0.44 0.04 -0.39	5 1.68 -1.84 3.15 2.23 -0.34 2.77 -2.39 -0.19 4.34 -0.15	$\begin{vmatrix} 1.03 \\ 1.51 \\ -0.19 \\ -0.62 \\ -0.20 \end{vmatrix}$ $\begin{vmatrix} 1.33 \\ 1.75 \\ -0.49 \\ -0.21 \\ 0.00 \end{vmatrix}$	Methan 0.94 1.59 -0.33 -0.21 -0.61 Ethano 1.80 1.58 -0.27 0.02 -0.35	nol/Rh _{1:} 0.89 1.42 -0.66 -0.21 -0.18 0l/Rh ₁₅ 1.66 1.45 -0.62 0.07 0.06	0.75 1.01 -0.10 -0.57 -0.18 1.78 0.89 -0.66 0.11 0.24	$ \begin{array}{r} 1.04\\ 1.19\\ -0.06\\ -0.21\\ -0.66\\ \hline 1.44\\ 1.27\\ -0.31\\ -0.32\\ 0.14\\ \end{array} $	Methan 0.41 1.35 -0.21 -0.67 -0.23 Ethan 1.18 1.54 -0.64 0.06 0.06	$\begin{array}{c} \text{nol/Pd}_{1:} \\ \hline 0.23 \\ 1.38 \\ -0.18 \\ -0.62 \\ -0.14 \\ \hline 0l/Pd_{15} \\ \hline 1.71 \\ 0.87 \\ -0.27 \\ 0.15 \\ -0.27 \end{array}$	0.70 1.04 -0.21 -0.62 -0.13 1.44 0.52 -0.26 0.24 -0.17	0.31 1.01 -0.10 -0.55 -0.18 1.23 0.80 -0.17 0.13 -0.11	Methan 0.38 0.73 -0.01 -0.53 -0.10 Ethanc 1.22 0.59 -0.48 0.17 0.29	$ \begin{array}{r} \text{ool/Ag}_{12} \\ \hline 0.65 \\ 0.82 \\ -0.14 \\ -0.51 \\ 0.03 \\ \hline 01/Ag_{15} \\ 1.25 \\ 0.88 \\ -0.53 \\ 0.16 \\ 0.37 \\ \end{array} $	5 0.66 0.63 -0.10 -0.56 0.22 1.23 0.55 -0.28 0.16 -0.12
О-H С-O С-H С-H О-H С-O С-C С-C С-H С-H	$0.51 \\ 1.89 \\ -0.24 \\ -0.21 \\ -0.63 \\ 1.39 \\ 2.13 \\ -0.78 \\ -0.01 \\ -0.02 \\ -0.28 \\ $	Methan 0.54 1.37 -0.16 -0.71 -0.29 Ethan 1.50 2.23 -0.51 -0.05 -0.38 -0.13	nol/Ru_{1} 0.86 1.64 -0.26 -0.66 -0.25 0l/Ru_{15} 1.56 1.47 -0.44 0.04 -0.39 -0.03	5 1.68 -1.84 3.15 2.23 -0.34 2.77 -2.39 -0.19 4.34 -0.15 -0.27	$\begin{vmatrix} 1.03 \\ 1.51 \\ -0.19 \\ -0.62 \\ -0.20 \end{vmatrix}$ $\begin{vmatrix} 1.33 \\ 1.75 \\ -0.49 \\ -0.21 \\ 0.00 \\ 0.04 \end{vmatrix}$	Methan 0.94 1.59 -0.33 -0.21 -0.61 Ethanc 1.80 1.58 -0.27 0.02 -0.35 -0.10	$ \text{nol/Rh}_{1:} $	0.75 1.01 -0.10 -0.57 -0.18 1.78 0.89 -0.66 0.11 0.24 -0.30	$ \begin{array}{r} 1.04\\ 1.19\\ -0.06\\ -0.21\\ -0.66\\ \hline 1.44\\ 1.27\\ -0.31\\ -0.32\\ 0.14\\ -0.01\\ \end{array} $	Methan 0.41 1.35 -0.21 -0.67 -0.23 Ethan 1.18 1.54 -0.64 0.06 0.06 -0.30	$\begin{array}{c} \text{nol/Pd}_{1:} \\ \hline 0.23 \\ 1.38 \\ -0.18 \\ -0.62 \\ -0.14 \\ \hline 0l/Pd_{15} \\ \hline 1.71 \\ 0.87 \\ -0.27 \\ 0.15 \\ -0.27 \\ 0.15 \\ 0.15 \end{array}$	$\begin{array}{c} 0.70\\ 1.04\\ -0.21\\ -0.62\\ -0.13\\ \hline \\ 1.44\\ 0.52\\ -0.26\\ 0.24\\ -0.17\\ -0.15\\ \end{array}$	0.31 1.01 -0.10 -0.55 -0.18 1.23 0.80 -0.17 0.13 -0.11 -0.04	Methan 0.38 0.73 -0.01 -0.53 -0.10 Ethanc 1.22 0.59 -0.48 0.17 0.29 -0.28	$\begin{array}{c} \text{ool/Ag}_{12} \\ \hline 0.65 \\ 0.82 \\ -0.14 \\ -0.51 \\ 0.03 \\ \hline \text{ol/Ag}_{15} \\ \hline 1.25 \\ 0.88 \\ -0.53 \\ 0.16 \\ 0.37 \\ -0.25 \end{array}$	5 0.66 0.63 -0.10 -0.56 0.22 1.23 0.55 -0.28 0.16 -0.12 0.03
О-H С-O С-H С-H С-H О-H С-O С-C С-H С-H С-H	$\begin{array}{c} 0.51 \\ 1.89 \\ -0.24 \\ -0.21 \\ -0.63 \\ \hline \\ 1.39 \\ 2.13 \\ -0.78 \\ -0.01 \\ -0.02 \\ -0.28 \\ 0.62 \\ \end{array}$	Methan 0.54 1.37 -0.16 -0.71 -0.29 Ethan 1.50 2.23 -0.51 -0.05 -0.38 -0.13 -0.09	nol/Ru_{1} 0.86 1.64 -0.26 -0.66 -0.25 0l/Ru_{15} 1.56 1.47 -0.44 0.04 -0.39 -0.03 -0.16	5 1.68 -1.84 3.15 2.23 -0.34 2.77 -2.39 -0.19 4.34 -0.15 -0.27 1.15	$\begin{vmatrix} 1.03 \\ 1.51 \\ -0.19 \\ -0.62 \\ -0.20 \end{vmatrix}$ $\begin{vmatrix} 1.33 \\ 1.75 \\ -0.49 \\ -0.21 \\ 0.00 \\ 0.04 \\ -0.13 \end{vmatrix}$	Methan 0.94 1.59 -0.33 -0.21 -0.61 Ethano 1.80 1.58 -0.27 0.02 -0.35 -0.10 -0.11	nol/Rh _{1:} 0.89 1.42 -0.66 -0.21 -0.18 0l/Rh ₁₅ 1.66 1.45 -0.62 0.07 0.06 -0.29 0.50	0.75 1.01 -0.10 -0.57 -0.18 1.78 0.89 -0.66 0.11 0.24 -0.30 -0.34	$\begin{vmatrix} 1.04 \\ 1.19 \\ -0.06 \\ -0.21 \\ -0.66 \\ \end{vmatrix}$ $\begin{vmatrix} 1.44 \\ 1.27 \\ -0.31 \\ -0.32 \\ 0.14 \\ -0.01 \\ -0.13 \end{vmatrix}$	Methan 0.41 1.35 -0.21 -0.67 -0.23 Ethan 1.18 1.54 -0.64 0.06 0.06 -0.30 -0.18	$\begin{array}{c} \text{nol/Pd}_{1:} \\ 0.23 \\ 1.38 \\ -0.18 \\ -0.62 \\ -0.14 \\ \hline \text{ol/Pd}_{15} \\ 1.71 \\ 0.87 \\ -0.27 \\ 0.15 \\ -0.27 \\ 0.15 \\ -0.27 \\ 0.15 \\ -0.07 \end{array}$	$\begin{array}{c} 0.70\\ 1.04\\ -0.21\\ -0.62\\ -0.13\\ \hline \end{array}$ $1.44\\ 0.52\\ -0.26\\ 0.24\\ -0.17\\ -0.15\\ -0.01\\ \end{array}$	0.31 1.01 -0.10 -0.55 -0.18 1.23 0.80 -0.17 0.13 -0.11 -0.04 -0.20	Methan 0.38 0.73 -0.01 -0.53 -0.10 Ethanc 1.22 0.59 -0.48 0.17 0.29 -0.28 -0.22	$\begin{array}{c} \text{ool/Ag}_{12} \\ \hline 0.65 \\ 0.82 \\ -0.14 \\ -0.51 \\ 0.03 \\ \hline \text{ol/Ag}_{15} \\ \hline 1.25 \\ 0.88 \\ -0.53 \\ 0.16 \\ 0.37 \\ -0.25 \\ -0.25 \end{array}$	5 0.66 0.63 -0.10 -0.56 0.22 1.23 0.55 -0.28 0.16 -0.12 0.03 -0.18

	Ethylene Glycol/Ru ₁₅				Ethylene Glycol/Rh ₁₅				Ethylene Glycol/Pd ₁₅				Ethylene Glycol/Ag ₁₅			
O-H	H 1.25 0.17 0.50 0.18			1.34 0.28 1.01 0.27			0.98	1.16	-0.11	0.13	1.00	0.20	0.77	-0.09		
O-H	1.47	2.33	0.10	0.56	1.99	2.12	0.22	1.36	1.82	1.80	1.89	0.71	0.86	0.77	0.13	0.08

Continuation of Table S5

d_0	Δd_0															
C-0	1.14	1.13	0.97	2.08	1.31	1.03	1.25	0.95	1.11	1.00	1.61	1.61	0.72	0.70	0.39	1.16
C-0	-0.21	0.50	1.09	-1.85	-0.97	0.12	1.84	0.40	-0.21	-0.11	-0.85	0.32	0.02	-0.31	0.31	-0.41
C-C	0.38	-0.05	-0.62	-0.22	0.18	0.10	-0.27	-0.36	0.10	0.31	-0.10	0.12	0.16	0.00	-0.01	-0.63
C-H	-0.45	-0.08	-0.08	-0.05	-0.09	0.10	0.06	-0.32	-0.43	-0.47	-0.03	-0.08	-0.39	0.08	-0.11	-0.06
C-H	-0.04	-0.02	-0.17	-0.24	-0.46	-0.29	-0.07	0.09	0.06	0.01	-0.06	-0.16	0.09	-0.21	0.29	0.23
C-H	0.76	-0.26	0.14	2.68	1.70	0.29	-0.09	-0.19	0.40	0.15	0.33	0.07	0.18	0.43	0.06	0.50
C-H	-0.17	0.13	0.02	-0.28	-0.05	-0.15	-0.18	0.22	0.10	-0.03	-0.05	0.12	0.11	-0.21	-0.10	0.35

	Methanol/Os ₁₅					Methanol/Ir ₁₅				Methanol/Pt ₁₅				Methanol/Au ₁₅			
O-H	1.06	0.48	1.27	1.04	1.98	0.27	0.90	1.97	0.99	0.34	1.64	0.29	0.56	0.21	0.98	0.63	
C-0	2.44	2.29	2.16	-0.86	1.67	2.07	1.63	-2.76	1.89	2.02	1.94	1.76	1.13	1.21	1.14	-0.90	
C-H	-0.77	-0.44	-0.23	0.68	-0.19	-0.66	-0.27	-0.14	-0.31	-0.73	-0.65	-0.58	-0.13	-0.58	-0.63	2.63	
C-H	-0.36	-0.69	-0.35	0.74	-0.28	-0.37	-0.72	6.80	-0.74	-0.33	-0.32	-0.24	-0.65	-0.23	0.14	-0.08	
C-H	-0.46	-0.46	-0.72	-0.36	-0.72	-0.35	-0.30	-0.31	-0.24	-0.30	-0.35	-0.22	-0.22	-0.25	-0.25	-0.47	

	Ethanol/Os ₁₅				Ethanol/Ir ₁₅				Ethanol/Pt ₁₅				Ethanol/Au ₁₅			
O-H	1.89	1.58	1.48	2.14	1.39	2.13	1.77	2.75	1.89	1.36	2.41	2.23	1.52	1.29	1.58	1.68
C-0	3.10	3.22	2.68	-1.26	2.34	2.04	1.86	-3.11	1.93	2.12	2.12	1.29	1.06	1.04	1.18	0.92
C-C	-0.96	-0.74	-0.66	0.16	-0.64	-0.57	-0.70	-0.25	-0.48	-0.58	-0.48	-0.29	-0.63	-0.27	-0.63	-0.23
C-H	-0.09	-0.47	-0.09	0.91	-0.10	-0.02	-0.05	-0.06	0.02	-0.39	-0.05	0.09	0.08	0.09	0.05	0.14
C-H	-0.18	-0.22	-0.15	-0.03	-0.30	-0.43	0.03	6.25	-0.37	-0.04	-0.32	-0.30	0.16	-0.20	0.20	-0.30
C-H	-0.36	-0.06	-0.15	-0.47	-0.02	-0.06	-0.26	-0.26	-0.11	-0.15	-0.11	-0.10	-0.28	0.02	-0.25	-0.04
C-H	-0.28	-0.21	-0.11	-0.12	-0.21	0.00	-0.01	0.59	-0.17	-0.02	-0.10	0.05	-0.30	-0.13	-0.24	-0.03
C-H	0.10	-0.11	-0.09	2.63	-0.10	-0.20	-0.24	-0.20	-0.11	0.48	-0.11	-0.14	-0.07	-0.03	0.10	-0.11

	Ethylene Glycol/Os ₁₅			Ethylene Glycol/Ir ₁₅				Ethylene Glycol/Pt ₁₅				Ethylene Glycol/Au ₁₅				
O-H	2.04	0.36	0.97	1.30	1.64	1.55	0.17	0.31	1.31	1.86	2.04	0.10	0.88	0.63	1.00	0.35
O-H	1.70	1.33	1.49	-0.04	0.40	2.80	1.66	2.82	1.88	0.97	0.28	2.08	0.87	1.06	0.91	-0.12
C-0	2.37	2.71	2.46	2.53	1.82	1.54	1.73	2.34	1.78	1.76	0.74	1.10	0.89	1.12	-0.13	1.33
C-0	-0.02	-1.27	-1.12	0.33	1.30	-1.85	0.67	-1.31	-0.41	0.12	1.42	0.31	-0.30	0.09	-1.60	-0.41
C-C	0.65	0.22	0.38	-0.24	0.10	0.34	-0.68	-0.06	0.11	0.72	-0.22	-0.47	0.13	-0.24	0.25	-0.76
C-H	-0.66	-0.23	-0.54	-0.30	-0.13	-0.50	-0.18	-0.13	-0.15	-0.61	-0.37	-0.09	-0.40	0.06	3.73	-0.15
C-H	-0.31	-0.44	-0.28	-0.10	0.11	-0.14	-0.25	-0.27	-0.53	-0.12	0.23	-0.11	0.00	0.12	-0.23	0.12
C-H	0.00	0.52	1.14	-0.10	-0.46	3.71	-0.07	0.59	0.01	0.78	-0.03	0.02	0.06	0.04	0.17	0.35

d_0	Δd_0													
C-H	$-0.22 \ -0.05 \ -0.14 \ -0.09$	-0.09 -0.10	0.01 -0.11	0.12 -0.23 -0.08	0.09	0.27 -0.25 -0.21	0.50							

6 Geometric Parameters of the Adsorbed Systems

Figure S16: The C–TM distances (in Å) in the adsorbed systems.

Figure S17: The O–TM distances (in Å) in the adsorbed systems.

Figure S18: The closest H–TM distance (in Å) in the adsorbed systems.

Figure S19: Percentage change in the ECN_{av} of the TM_{15} clusters due the adsorption of the methanol, ethanol and ethylene glycol.

Figure S20: Percentage change in the d_{av} of the TM₁₅ clusters due the adsorption of the methanol, ethanol and ethylene glycol.

7 Energetic properties off the adsorbed systems

Figure S21: Adsorption and interacting energies for the methanol, ethanol and ethylene glycol on TM_{15} clusters

8 Electronic and charges properties of the adsorbed systems

Figure S22: Isosurfaces of the electron density difference for the methanol, ethanol and ethylene glycol on $3d \text{ TM}_{15}$ clusters

Figure S23: Isosurfaces of the electron density difference for the methanol, ethanol and ethylene glycol on $4d \text{ TM}_{15}$ clusters

Figure S24: Isosurfaces of the electron density difference for the methanol, ethanol and ethylene glycol on $5d \text{ TM}_{15}$ clusters

Figure S25: Density of states per atom for alcohols and the average density of states for 3*d*-TM atoms that interact with the molecules in the adsorbed systems.

Figure S26: Density of states per atom for alcohols and the average density of states for 4d-TM atoms that interact with the molecules in the adsorbed systems.

Figure S27: Density of states per atom for alcohols and the average density of states for 5d-TM atoms that interact with the molecules in the adsorbed systems.

Figure S28: for alcohol/ TM_{15}^{3d} adsorbed systems.

Figure S29: for alcohol/ TM_{15}^{4d} adsorbed systems.

Figure S30: for alcohol/ TM_{15}^{5d} adsorbed systems.

9 Linear Regression

Table S6: Coefficients, w_i , and relative importancies $\left(RR_i = \frac{|w_i|}{\sum_i |w_i|}\right)$ for the linear regressions of adsorption energy ($E_{ad} = \sum_i w_i x_i + b$), where *b* is the constant in the decision function also known as bias), for each one of the alcohols. As x_i are unit-less (because of standard scaling), w_i and *b* are in eV. *RR* is unit-less by definition. R^2 is the standard coefficient of determination.

	Metha	nol	Ethan	ol	Ethylene Glycol		
	Absolute	<i>RR</i> (%)	Absolute	<i>RR</i> (%)	Absolute	<i>RR</i> (%)	
Coef. for d_{O1-TM}	0.153 104	33.12	0.221039	37.20	0.116320	25.00	
Coef. for d_{O2-TM}	-	-	-	-	-0.019855	4.27	
Coef. for d_{H1-TM}	0.018889	4.09	-0.023093	3.89	0.029998	6.45	
Coef. for d_{H2-TM}	-	-	-	-	0.020738	4.46	
Coef. for θ_{O1H1}	-0.051143	11.06	-0.074934	12.61	0.053663	11.53	
Coef. for θ_{O2H2}	-	-	-	-	0.007550	1.62	
Coef. for θ_{cm}	0.003967	0.86	-0.005880	0.99	0.004282	0.92	
Coef. for Total Charge	0.012726	2.75	0.083 563	14.06	0.064786	13.92	
Coef. for TM group	0.024036	5.20	0.013159	2.21	0.093733	20.14	
Coef. for TM period	-0.104532	22.61	-0.074724	12.58	-0.032098	6.90	
Coef. for TM val. elec.	-0.038846	8.40	-0.036415	6.13	0.018393	3.95	
Coef. for TM electronegativity	0.055089	11.92	0.061330	10.32	-0.003888	0.84	
Constants in decision function	-0.563772	-	-0.629883	-	-0.740960	-	
\mathbb{R}^2	0.6847	-	0.7131	-	0.7434	-	

Table S7: Number of samples observed in each of the groups classified by *k-means* using bond lengths between metal and hydroxyl atoms, discriminated by metallic specie.

	Ethy	lene Glycol			Ethano	ol	Methanol				
TM_{15}	$O_1 - TM + H^O - TM$	O-TM+O-TM	O-TM	O-TM	H ^O -TM	H ^{-CH3} -TM	O-TM	H ^O -TM	H ^{-CH3} -TM		
Ag	6	2	4	12	0	0	12	0	0		
Co	7	3	2	11	1	0	12	0	0		
Cu	7	2	3	11	1	0	11	1	0		
Ni	6	4	2	11	1	0	11	1	0		
Os	10	1	1	10	2	0	11	1	0		
Pt	4	7	1	12	0	0	12	0	0		
Ag	6	2	4	12	0	0	12	0	0		
Fe	4	4	4	11	1	0	11	1	0		
Pt	4	7	1	12	0	0	12	0	0		
Rh	6	6	0	12	0	0	12	0	0		
Au	5	5	2	11	1	0	11	1	0		
Ir	7	2	3	8	3	1	8	3	1		
Total	72	45	27	133	10	1	135	8	1		