Supplementary information of

Dynamics of aqueous peptide solutions in folded and disordered states examined by dynamic light scattering and dielectric spectroscopy.

Jorge H. Melillo¹, Jan Philipp Gabriel^{2,3}, Florian Pabst³, Thomas Blochowicz³, Silvina Cerveny^{1,4}

¹Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC), Paseo Manuel de Lardizabal 5 (20018), San Sebastián, Spain.

²School for Molecular Sciences, Arizona State University, Tempe, 85287 USA

³Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

⁴Donostia International Physics Center, Paseo Manuel de Lardizabal 4 (20018), San Sebastián, Spain.

Figure S1. Relaxation strengths as a function of the water content obtained from fits of the data of ϵ -poly(lysine) solutions. (a) $\Delta \epsilon$ for the fast water relaxation at 140, 170 and 200 K. (b) $\Delta \epsilon$ for the slow water relaxation and the solute relaxation are shown for 205, 252.5 and 275 K.

Figure S2. Normalized DDLS electric field correlation function $(g_I(t))$ for ε -PLL-water solution with 40 wt% of water and pH = 10 at different temperatures and scattering angle of $\theta = 90^{\circ}$. The A-DDLS and B-DDLS processes as well as the α -relaxation are displayed. The solid line are the fits using two single exponentials decays for slow and fast processes and an extended exponential for the α -relaxation. The Inset shows both the α -relaxation and the A-DDLS process.

Figure S3. Intensity correlation function $(g_2(t)-1)$ in VV geometry and angle of $\theta = 90^0$ for water for different treatment protocols. The Inset shows the excess light scattering (kilocounts per second) for each treatment.