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S1: Chemical Potential Tables

As discussed in the main text, we consider two selected oxygen chemical potential conditions:

∆µO = −2.42 eV, which corresponds to experimental sintering conditions,1 and ∆µO = −1

eV, which represents more O-rich conditions. Table 2 in the main text lists the maximum

allowed carbon chemical potentials under both of these conditions, assuming Sr/Ba-poor

synthesis. In Table S1, we list the full chemical potentials (∆µ{Sr,Ba}, ∆µ{Ce,Zr} and ∆µC) for

the cerates and zirconates for ∆µO = −2.42 eV. In Table S2, we do the same for ∆µO = −1

eV.
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TABLE S1: Chemical potentials in the cerates and zirconates at C-rich, Sr/Ba-poor condi-
tions, with ∆µO = −2.42 eV.

Compound ∆µ{Sr,Ba} (eV) ∆µ{Ce,Zr} (eV) ∆µC (eV)

SrCeO3 –3.29 –6.45 –1.43

BaCeO3 –3.18 –6.45 –1.47

SrZrO3 –3.97 –6.15 –0.75

BaZrO3 –3.88 –6.15 –0.77

TABLE S2: Chemical potentials in the cerates and zirconates at C-rich, Sr/Ba-poor condi-
tions, with ∆µO = −1 eV.

Compound ∆µ{Sr,Ba} (eV) ∆µ{Ce,Zr} (eV) ∆µC (eV)

SrCeO3 –4.71 –9.29 –4.27

BaCeO3 –4.60 –9.29 –4.31

SrZrO3 –5.39 –8.99 –3.59

BaZrO3 –5.30 –8.99 –3.61

S2: Chemical Stability Diagrams

We plot the chemical stability regions (shaded in gray) for the cerates and zirconates in

Fig. S1. The stability regions for each cerate and zirconate are narrow in ∆µ{Ce,Zr}-vs.-∆µO

space. For each compound, the widths are as follows: 0.05 eV for SCO [Fig. S1(a)], 0.39 eV

for SZO [Fig. S1(b)], 0.26 eV for BCO [Fig. S1(c)], and 0.61 eV for BZO [Fig. S1(d)]. The

narrow widths explain the low variability in formation energies when comparing the Sr/Ba-

rich and Sr/Ba-poor limits. Note that Refs. 2 and 3 considered additional limiting phases

for SCO and BCO; however, for the oxygen chemical potentials of interest, the regions where

those phases form are not relevant, so we neglect them here.
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FIG. S1: Chemical potential phase diagrams for (a) SrCeO3, (b) SrZrO3, (c) BaCeO3, (d)
BaZrO3. Competing phases are indicated.

S3: Effect of Changing ∆µO on Formation Energy Dia-

grams

As discussed in the main text, changing the oxygen chemical potential does not change the

formation energy at the charge neutrality point; instead, it merely shifts the Fermi level at

which charge neutrality is achieved to lower energies. We show this trend graphically for

each compound in Fig. S2, with results for ∆µO = −1 eV in the left column and those for

∆µO = −2.42 eV (also shown in Fig. 2 in the main text) on the right. Sr/Ba-poor conditions

are used throughout.
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FIG. S2: Defect formation energies for SCO under Sr-poor conditions for (a) ∆µO = −1
eV and (b) ∆µO = −2.42 eV; defect formation energies for BCO under Ba-poor conditions
for (c) ∆µO = −1 eV and (c) ∆µO = −2.42 eV; defect formation energies for SZO under
Sr-poor conditions for (e) ∆µO = −1 eV and (f) ∆µO = −2.42 eV; and defect formation
energies for BZO under Ba-poor conditions for (g) ∆µO = −1 eV and (h) ∆µO = −2.42 eV.
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