
Electronic supplementary information to:
“Crucial impact of layer exchange on
temperature programmed desorption”

Tobias Dickbreder, Ralf Bechstein and Angelika Kühnle
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1 Introduction

In our manuscript we present a kinetic model to describe desorption in systems with two layers
and exchange between those layers. �is model shows that considering layer exchange can alter
the desorption spectrum considerably even for second layer coverages as small as 1 × 10−6 ML. We
identify a second-layer desorption mechanism where particles in the �rst layer hop on top of other
particles prior to desorption. Moreover, we show that the desorption via this hop on topmechanism
results in a modi�ed Polanyi-Wigner equation given that layer exchange is in quasi-equilibrium
and the energy di�erence between the layers is su�ciently high. Our study thus demonstrates that
considering layer exchange can make transient desorption positions relevant even for coverages
where the vast majority of particles resides in the �rst layer.
In this ESI, we provide additional information on our model and on the simulation of desorp-

tion spectra based on our model. To this end, we discuss in detail which cases are relevant for
the relation between the rates of layer exchange and desorption and how the these cases can be
characterized in terms of kinetic parameters. We use this characterization to develop a simple
way to classify a given set of kinetic parameters. Moreover, we present how our model can be
adapted to another geometry and compare the results to the simple chain geometry discussed in
our manuscript. We elucidate the in�uence of the initial coverage on the contribution of desorp-
tion via hop on top on the desorption spectrum. Last, we explain technical aspects concerning the
numerical calculation of desorption spectra from the model di�erential equations.

2 Relevant Cases

In our manuscript we introduce the three cases in terms of the relation between the rates of desorp-
tion and layer exchange (Fig. S1). Namely, we investigate (a) kinetically-hindered layer exchange,
(b) balance between layer exchange and desorption, and (c) quasi-equilibrium layer exchange. In
case (a), kinetically-hindered layer exchange, layer exchange is considerably slower than desorp-
tion thus, layer exchange does not take place on the timescale of desorption. �is corresponds to
a signi�cantly higher energy barrier for layer exchange than for desorption as presented in Fig.
S1 (a). In case (b) the rates of layer exchange and desorption are of the same order in both layers,
which is why the kinetics of desorption are governed by a balance between layer exchange and
desorption. In terms of Gibbs free energy this means that ∆Gd,2 ≈ ∆Gle,2→1 (see Fig. S1 (b)). Case
(c) is characterised by signi�cantly faster layer exchange than desorption, i.e., a signi�cantly higher
energy barrier for desorption than layer exchange (see Fig. S1 (c)). Hence, layer exchange is in a
state of quasi-equilibrium on the timescale of desorption.
In this section, we discuss a quantitative classi�cation of the three cases and provide a simple

method to assign a case to a given set of kinetic parameters. Moreover, we present additional
simulated desorption spectra for the cases of kinetically-hindered layer exchange (case (a)) and
balance between layer exchange and desorption (case (b)).
Desorption spectra shown in this section are calculated numerically as described in section 6. In

order to do so, we use the same kinetic parameters we use in for the simulations in our manuscript
(see Tab. 1). In addition to these kinetic parameters the simulations for cases (a) and (b) require
activation barriers for layer exchange ∆Ele,2→1 and ∆Sle,2→1. �ose barriers are speci�ed in the
corresponding sections. Moreover, it is necessary to set the initial coverages in the �rst and second
layer for a given initial total coverage. �ese coverages were obtained from the total coverage with
a simple ballistic model described in section 6.1. Brie�y, this model is based on the assumption that
the particles hit the surface randomly while dosing. When a particle hits an unoccupied adsorption
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Figure S1: Schematic Gibbs free energy diagrams for the three cases discussed here, which are
kinetically-hindered layer-exchange (a), balance between layer exchange and desorp-
tion (b) and quasi-equilibrium layer exchange (c). In this scheme the Gibbs free energy
landscape is characterised by the barriers for desorption from the �rst and second layer
∆Gd,1 and ∆Gd,2 respectively, and the barrier for layer exchange from the second to the
�rst layer ∆Gle,2→1.

site it sticks with a given probability and is otherwise rejected. Particles colliding with an occupied
adsorption site do not adsorb.

Table 1: Kinetic energy barriers ∆Ex and entropy changes ∆Sx of desorption from the �rst (d,1)
and second layer (d,2) used for the simulation of desorption spectra.

Process ∆Ex / eV ∆Sx / kB

d,1 1.0 10
d,2 0.5 2

2.1 Case classification and stability

In Fig. S1, we considered rather extreme examples, which clearly correspond to one of the three
cases. For sets of kinetic parameters in the intermediate range between two cases, however, an
intuitive classi�cation might fail. �erefore, we discuss in detail how di�erent kinetic parameters
correspond to the three cases discussed above. To this end, we determine which conditions are
necessary for the rates of layer exchange and desorption to be equal in the �rst and second layer
and how to express these conditions with the energy barriers of the system.

First layer In the �rst layer, we compare the rate of layer exchange rle,1→2
Nad

from the �rst to the
second layer with the �rst-layer desorption rate rd,1

Nad
. �ose rates are identical if Eq. 1 holds true.

2kle,1→2(θ1 − θ2)
2 = kd,1(θ1 − θ2) (1)
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Eq. 1 can be rearranged to Eq. 2.

kd,1
kle,1→2

= 2(θ1 − θ2) (2)

When we apply transition state theory for the rate constants and ∆Gx = ∆Ex − T∆Sx we obtain
Eq. 3. Additionally, we use the relation between the rate constants of layer exchange and desorption
derived in the main text (kd,1/kd,2 = kle,1→2/kle,2→1).

∆Gle,2→1 − ∆Gd,2 = kBT [ln(2) + ln(θ1 − θ2)] (3)

Second layer When we apply the same strategy as shown for the �rst layer, we obtain for the
second layer Eq. 4 and Eq. 5.

2kle,2→1(1 − θ1)θ2 = kd,2θ2 (4)

∆Gle,2→1 − ∆Gd,2 << kBT [ln(2) + ln(1 − θ1)] (5)

We can use these equal-rate-equations for the �rst and second layer (Eq. 3 and Eq. 5) in order
to determine which case applies for a given set of kinetic parameters and temperature. To this
end, Fig. 4 shows ∆Gle,2→1−∆Gd,2

kBT
as a function of the �rst- and second-layer coverages, where the

surface of equal rates in the �rst (second) layer is displayed in red (blue). For a speci�c set of kinetic
parameters the same quantity (∆Gle,2→1−∆Gd,2

kBT
) can be calculated and is displayed in Fig. S2 as a black

plane for an example of case (c) (speci�c parameters given in the �gure caption). �is means that
the rates of desorption and layer exchange are equal at the intersection of the black plane with
an equal-rate surface. Moreover, desorption is faster (slower) than layer exchange in one layer if
the black plane is above (below) the corresponding equal-rate surface. �e di�erence between the
black plane and the equal rate surface is a measure for the di�erence in rates. Hence, Fig. S2 shows
which case applies for a given set of kinetic parameters by evaluation of the di�erence between
the equal-rate surfaces and ∆Gle,2→1−∆Gd,2

kBT
along the path of a desorption spectrum in terms of T , θ1

and θ2. However, the evaluation of Fig. S2 along the path of a desorption spectrum requires the
knowledge of this path and, thus, of the desorption spectrum. As this information is not available
beforehand, we provide a simpli�ed case stability diagram (Fig. S3) for practical purposes.
For the simpli�ed case stability diagram, we use Fig. S2 to �nd critical values for the change

between the cases. To ensure case (a) (case (c)) the term ∆Gle,2→1−∆Gd,2
kBT

has to be larger (smaller)
than 6 (-8). In the intermediate range, case (b) applies. �ese critical values are independent of
the �rst- and second-layer coverages, so the only remaining variable for the desorption path is
the temperature. As a consequence, we can determine the case from a plot of ∆Gle,2→1−∆Gd,2

kBT
as a

function of temperature as shown in Fig. 5. If ∆Gle,2→1−∆Gd,2
kBT

is smaller than -8 case (c) is applicable
(cyan area). If ∆Gle,2→1−∆Gd,2

kBT
is between -8 and 6, the desorption spectrum is governed by case (b)

and for values of ∆Gle,2→1−∆Gd,2
kBT

greater than 6 we can apply case (a) (violet area).
If the case changes in the course of a TPD experiment (black curve changes region) it needs to

be considered that equilibrium condition is displayed in Fig. S3, which is not necessarily reached
in the experiment.
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Figure S2: Di�erence ∆Gle,2→1−∆Gd,2
kBT

as a function of the �rst- and second-layer coverages. �e equal-
rate surfaces for the �rst and second layer are displayed in red and blue, respectively,
and the ∆Gle,2→1−∆Gd,2

kBT
value calculated for an example of case (c) (parameters in Tab. 1,

∆Ele,2→1 = 0.1 eV and ∆Sle,2→1 = 0 ) and a temperature of 280 K is shown as a black
plane. Hence, the rates of layer exchange and desorption of the current system are equal
at the intersection between the black plane and the equal-rate surfaces. If the black
plane is above (below) an equal-rate surface the desorption rate is higher (smaller) than
the rate of layer exchange in the corresponding layer.

2.2 Kinetically-hindered layer exchange

In case of kinetically-hindered layer exchange, desorption is much faster than layer exchange in
both layers, which corresponds to a signi�cantly higher barrier for layer exchange than for desorp-
tion (see section 2.1). Hence, desorption is the preferred process while layer exchange is negligible
on the timescale of desorption. �is means that particles can only di�use within their layer or
desorb, but they cannot change from the �rst to the second layer or the other way around. Con-
sequently, there is no coupling between desorption from the �rst and second layer as long as the
energy di�erence between the layers is high enough that all particles from the second layer desorb
before desorption from the �rst layer gets signi�cantly fast. In this line of argumentation, we ex-
pect that each individual peak (�rst-layer and second-layer desorption) can be described perfectly
with a Polanyi-Wigner approach.
A typical desorption spectrum simulated for the case of kinetically-hindered layer exchange is

displayed in Fig. S4. For the initial coverage 1.0ML is chosen. Interestingly, the modelled desorp-
tion spectrum (violet) in Fig. S4 (a) shows two desorption signals — one for desorption from the
�rst and second layer, respectively — not just one for desorption from the �rst layer as suggested
by the total coverage of 1.0ML. �is is caused by the way particles are dosed onto the surface.
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Figure S3: Simpli�ed case stability diagram. �e Gibbs free energy di�erence ∆Gle,2→1−∆Gd,2
kBT

is dis-
played as a function of temperature for the speci�ed kinetic parameters. �ose parts
of the diagram where layer exchange is kinetically-hindered (case (a)) are displayed in
violet and those parts where layer exchange is in equilibrium (case (c)) in cyan. For
determination of these classi�cation areas, critical ∆Gle,2→1−∆Gd,2

kBT
values were used as ex-

plained in the text. Moreover, the start and end temperatures of the TPD experiment (i.e.
the relevant temperature range) are marked with tick on the temperature axis.

While dosing, the particles are not deposited in the �rst layer solely, but hit the surface randomly,
so particles are deposited in the second layer as well as soon as there is a signi�cant �rst layer
occupation. As we consider a case with a high barrier for layer exchange, this barrier prevents
particles from layer exchange at the temperature relevant for desorption. Certainly, the particles
cannot change their layer during the dosing phase at much lower temperatures either, which is why
they desorb from their initial state causing two desorption signals. �is conclusion is supported by
the �rst- (red) and second-layer (blue) coverages in Fig. S4 (b), because there is no simultaneous
decrease in second-layer coverage and increase in �rst-layer coverage, which would be indicative
for an exchange of particles from the second to the �rst layer.
Apart from the fact that the second layer desorption peak appears before the �rst layer is com-

pletely �lled, the modelled desorption spectrum in Fig. S4 (a) shows two typical �rst-order des-
orption signals for desorption from the �rst and second layer. Both signals consist of a single
desorption path each, which can be seen in Fig. S4 (a) as the contributions of �rst-layer (second-
layer) desorption in red (blue) coincide with the total desorption spectrum in violet in the range of
the second (�rst) desorption peak. In Fig. S4 (b) this picture is supported by the observation that
the coverages of the �rst (second) layer are constant while desorption from the second (�rst) layer
takes place. �e di�erences between the �rst layer desorption signal and the �rst-order Polanyi-
Wigner desorption spectrum (grey) can be explained solely by the di�erence between the coverage
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Figure S4: Comparison of simulated desorption spectra (a) and total coverage as a function tem-
perature (b) for a two-layer system with kinetically-hindered layer exchange according
to our model (violet) and a �rst order Polanyi-Wigner process with the same kinetic pa-
rameters as used for desorption from the �rst layer (grey). For the two-layer model the
contributions of desorption from the �rst (red) and second (blue) layer are shown in (a)
and the corresponding coverages in (b). �e TPD data was calculated with the kinetic
parameters for desorption given in the text and an additional barrier for layer exchange
of ∆Ele,2→1 = 0.7 eV and ∆Sle,2→1 = 0 kB. Initial coverages for this simulation were
obtained with a ballistic model.

in the �rst layer and the total coverage§. We conclude that in this case desorption from the �rst and

§For the calculation of the �rst-order Polanyi-Wigner desorption spectrum the initial coverage was the total coverage
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second layer are independent from each other as long as the energy di�erence between the layers is
high enough for their desorption signals not to overlap. Consequently, a Polanyi-Wigner model is
perfectly suitable to describe desorption from the �rst and second layer respectively. Moreover, we
can use analysis methods based on the Polanyi-Wigner equation — e.g., leading edge or complete
analysis — for the determination of kinetic parameters for desorption. However, the appearance
of the second layer desorption peak before the �rst layer is completely �lled can lead to problems
with calibration. It is a common procedure to calibrate the desorption rate with the intensity of
the �rst layer desorption spectrum just before the second layer desorption peak appears. In case of
kinetically-hindered layer exchange, we cannot use this strategy as it would cause an erroneously
high desorption rate. �is, in turn, introduces (additional) errors in the kinetic parameters in gen-
eral and especially in the entropy barrier for desorption. Instead, we can use the maximum peak
intensity achievable for the �rst layer desorption signal to calibrate our data.
An experimental strategy to solve this problemwith calibration is annealing the sample between

dosing and the actual TPD measurement. If the sample is heated to an intermediate temperature
prior to the TPD experiment particles in the second layer can either change to the �rst layer or
desorb∗. �us, the �rst layer will be occupied �rst, which results in a layer-by-layer appearance
of the desorption signals. In case of kinetically-hindered layer exchange, however, we need to
consider that particles in the second layer will only desorb, but they do not change from the second
to the �rst layer. �erefore, it is necessary to dose until the �rst layer is completely occupied, before
the initial coverage can be adjusted by varying the annealing time.
�e use of annealing steps in TPD experiments have been reported, e.g., by Kachel et. al.1 for

naphthalene and azulene on Ag(111) and Cu(111). �ey have observed that TPD experiments with-
out annealing show irregular leading edges, while the line shapes a�er annealing are regular and
well de�ned. �ey have a�ributed this di�erence in leading edges to the formation of metastable
phases during dosing, which transform or desorb when the sample is annealed. �ey have pointed
out that these irregular leading edges can lead to erroneous results in the data analysis.1

2.3 Balance between layer exchange and desorption

Next, we turn to case (b), where the reaction rates of layer exchange and desorption are on the
same order, i.e., the corresponding energy barriers ∆Gle,2→1 and ∆Gd,2 are similar (see Fig. S1
(b)). Hence, neither layer exchange nor desorption alone govern the desorption spectrum but the
balance between both processes is crucial for the kinetics of desorption. �is means that layer
exchange takes place on the timescale of desorption, but is not fast enough to reach its equilibrium
state, so we can interpret case (b) as an intermediate between the limiting cases of kinetically-
hindered layer exchange (a) and quasi-equilibrium layer exchange (c). Consequently, we expect
the desorption spectrum to depend on the initial coverages as the system cannot equilibrate prior
to desorption.
Simulated TPD data for the case of a balance between layer exchange and desorption are pre-

sented in Fig. S5. As in case (a) (see Fig. S4) the desorption spectrum for an initial total coverage
of 1.0ML — i.e., the violet curve in Fig. S5 (a) — shows two desorption signals. In this spectrum
the desorption signal at lower temperatures corresponds to the desorption of particles in the sec-
ond layer, whereas the second peak results from desorption of particles originating from the �rst

as no second layer exists for this model. For the two-layer model, however, the total coverage is distributed on both layers
as described above.

∗�is holds true as long as the energy di�erence between the layers is su�ciently high. If the energy di�erence between
the layers is indeed small, both layers are signi�cantly occupied in thermal equilibrium. Consequently, annealing will not
create a layer by layer occupation in those cases.
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layer. In this case, the appearance of a second-layer desorption signal for coverages below 1.0ML
is caused by a kinetic-trapping mechanism similar to the mechanism described for case (a). Here,
we can observe that the decrease in total and second-layer coverage during second-layer desorp-
tion is accompanied by an increase in �rst layer coverage (see Fig. S5 (b)). �is means that layer
exchange from the second to the �rst layer is not hindered during the entire TPD experiment, but
is activated in the same temperature range as desorption from the second layer. Hence, some par-
ticles desorb from the second layer while others change to the �rst layer when the second layer
becomes depopulated. Consequently, we cannot describe the second-layer desorption signal with
a simple Polanyi-Wigner term as two processes —layer exchange from the second to the �rst layer
and desorption from the second layer— are pivotal for the change in second-layer coverage.
�e high-temperature desorption peak in Fig. S5 (a) shows a �a�er low-temperature rise, a

higher peak width and a smaller maximum desorption rate compared to the �rst-order desorp-
tion spectrum (grey). We can explain the smaller maximum desorption rate and total integral of
the desorption signal with the fact that some molecules already desorbed from the second layer
as discussed in section 2.2. �e higher peak width and �a�er low temperature rise are caused by
desorption via hop on top as explained in our manuscript. However, these features are less devel-
oped than in case (c), because layer exchange is slower than in case (c) and, thus, desorption via
hop on top occurs less frequently. Fig. S5 (a) con�rms this interpretations as the contribution of
second-layer desorption (blue curve) during desorption from the �rst layer is smaller than in case
(c) (see Fig. 3 (a)).
In the interpretation of Fig. S5 (b) we discussed that second-layer desorption in case of a balance

between layer exchange and desorption is governed by this balance as well. To further investigate
the in�uence of layer exchange on the second-layer desorption signal in this case we calculated
desorption spectra with varying initial coverages as shown in Fig. S6 (a) (only the second layer
desorption signals are shown). Note that the initial coverages in the �rst and second layer were
calculated with our ballistic model as explained previously. Fig. S6 (a) shows that the maximum of
the second-layer desorption signal shi�s to higher temperatures with increasing initial coverages
(168 K to 178 K). �is shi� is typical for desorption kinetics with a fractional order. In this case,
however, the peak shi� is not caused by a fractional desorption order, but by the competition
between desorption from the second layer and layer exchange from the second to the �rst layer.
As a consequence, it is necessary to explicitly consider both layer exchange and desorption in the
analysis of the second-layer desorption peak.
To elucidate whether the kinetics of desorption can be simpli�ed by a changed experimental pro-

cedure, we consider the e�ect of annealing discussed in section 2.2. In order to do so, we simulate
desorption spectra with an annealing step between dosing and the TPD experiment. �e simulated
annealing experiment works as follows: For all simulated desorption spectra we started with an
initial coverage of 2.0ML a�er dosing at 120 K. Next, the surface was heated to the annealing tem-
perature of 165 K with a heat rate of 1.0 K s−1, held at this temperature for varying annealing times
and cooled back to 120 K. A�er the simulated annealing step, we simulate desorption spectra with
the initial coverages a�er annealing as described in section 6. We present desorption spectra sim-
ulated with the described annealing procedure in Fig. S6 (b). Fig. S6 (b) shows that the shi� in the
peak maxima vanishes for the annealed desorption spectra and, thus, the second-layer desorption
peaks can be described with simple �rst-order kinetics. �is change in kinetics is caused by the fact
that layer exchange from the second to the �rst layer can only take place if there are unoccupied
adsorption sites in the �rst layer. Hence, the in�uence of layer exchange on the second-layer des-
orption signal vanishes for a completely occupied �rst layer. Only the contribution of second-layer
desorption remains which follows �rst-order Polanyi-Wigner kinetics. We conclude that annealing
can be used to simplify the kinetics of desorption and, thus, the analysis of desorption spectra sig-
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Figure S5: Comparison of simulated desorption spectra (a) and total coverage as a function temper-
ature (b) for a two-layer system with a balance between layer exchange and desorption
according to our model (violet) and a �rst order Polanyi-Wigner process with the same
kinetic parameters as used for desorption from the �rst layer (grey). For the two-layer
model the contributions of desorption from the �rst (red) and second (blue) layer are
shown in (a) and the corresponding coverages in (b). �e TPD data was calculated with
the kinetic parameters for desorption given in the text and an additional barrier for layer
exchange of ∆Ele,2→1 = 0.45 eV and ∆Sle,2→1 = 0 kB. Initial coverages for this simulation
were obtained with a ballistic model.

ni�cantly. However, our model does not include layer exchange with the third (and higher layers),
so we cannot conclude that the second-layer desorption follows �rst order kinetics a�er annealing.
�e �rst-layer desorption signals are not in�uenced by annealing the sample prior to desorption
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Figure S6: Comparison of simulated second-layer desorption signals in case of a balance between
layer exchange for di�erent experimental procedures. (a) Simulated second-layer des-
orption signals for initial coverages θ0 of 0.1ML, 0.3ML, 0.5ML, 0.7ML, 0.9ML, 1.1ML,
1.3ML, 1.5ML, 1.7ML and 1.9ML. Initial coverages distributions were calculated based
on a ballistic model explained in section 6.1. (b) Simulated second-layer desorption sig-
nals a�er annealing as explained in the text. �e displayedwere calculatedwith an initial
coverage a�er dosing of 2.0ML and annealing times of 0.30 s, 60 s, 90 s, 120 s, 150 s, 180 s,
210 s, 240 s, 270 s and 300 s at 265 K. TPD data in both �gure part was calculated with the
kinetic parameters for desorption given in the text and an additional barrier for layer
exchange of ∆Ele,2→1 = 0.45 eV and ∆Sle,2→1 = 0 kB.

(except for the total peak intensity, see interactive visualisation (see section 6)).
We observe this e�ect of layer exchange on the second-layer desorption signal solely for case (b),
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because it only appears when layer exchange is activated in the same temperature range as desorp-
tion from the second layer. Consequently, the second-layer desorption peaks in case of kinetically-
hindered layer exchange (case (a)) and quasi-equilibrium layer exchange (case (c)) always agree
perfectly with a �rst-order Polanyi-Wigner approach.

3 Simple chain geometry

In our manuscript, we investigate the general in�uence of layer exchange on the kinetics of des-
orption. To this end, we develop a kinetic model for layer exchange and desorption on the example
of the rather simple simple chain geometry. �is results in a set of coupled di�erential equations
for the time evolution of the �rst-layer and second-layer coverage (Eq. 6 and Eq. 7) as well as
the desorption rate (Eq. 8). Based on these equations we derive a modi�ed Polanyi-Wigner equa-
tion in case of a su�ciently high energy di�erence between the layers and quasi-equilibrium layer
exchange.

dθ1
dt
= −2kle,1→2(θ1 − θ2)

2 + 2kle,2→1(1 − θ1)θ2 − kd,1(θ1 − θ2) (6)

dθ2
dt
= 2kle,1→2(θ1 − θ2)

2 − 2kle,2→1(1 − θ1)θ2 − kd,2θ2 (7)

rd
Nad
= kd,1(θ1 − θ2) + kd,2θ2 (8)

In this section, we present a modi�ed Polanyi-Wigner equation for all three cases given that the
energy di�erence between the layer is su�ciently high. Moreover, we derive an analytical solution
for the coverages in the �rst and second layer in layer exchange equilibrium.

3.1 Modified Polanyi-Wigner equation

In the main text, we present a modi�ed Polanyi-Wigner equation for the case of quasi-equilibrium
layer exchange. �is equation holds true given that the energy di�erence between the �rst and
second layer is su�ciently high and the total coverage is smaller than one. Here, we derive a
modi�ed Polanyi-Wigner equation suitable for all three cases.
For a su�ciently high energy di�erence between the layers and a total coverage smaller than

one only a very small fraction of particles resides in the second layer (θ2 << θ1). We can assume
θ ≈ θ1. Another consequence of the small second layer coverage is that the time derivation of θ2
is small as well, i.e., dθ2

dt ≈ 0. Hence, we can obtain an expression for θ2 as a function of the total
coverage by rearranging Eq. 7:

θ2 ≈
2kle,1→2θ

2

2kle,2→1(1 − θ) + kd,2
(9)

Insertion of Eq. 9 into the total desorption rate (Eq. 8) yields Eq. 10. It describes the total des-
orption rate as a function of the total coverage for all three cases given that only a small fraction
of particles resides in the second layer. As discussed for the modi�ed Polanyi-Wigner equation
presented in the main text, Eq. 10 reveals two contributions to the total desorption rate. We as-
sign the �rst contribution of kd,1θ to desorption from the �rst layer. �e second contribution of
kd,2

2kle,1→2θ
2

2kle,2→1(1−θ)+kd,2 describes desorption via hop on top as explained in the main text.
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rd
Nad
≈ kd,1θ + kd,2

2kle,1→2θ
2

2kle,2→1(1 − θ) + kd,2
(10)

Moreover it is important to note that Eq. 10 only depends on the total coverage and model
parameters and not on the �rst- and second-layer coverages. In contrast to the layer coverages, it
is easy to calculate the total coverage from a measured desorption spectrum. Hence, we expect that
the use of Eq. 10 rather than the model di�erential equation system can be useful for the evaluation
of experimental data. For example, we expect that Eq. 10 can be ��ed to a set of experimental
desorption spectra in order to derive the kinetic parameters of desorption and layer exchange. �is
analysis strategy should, in principle, work for all three cases as it accounts for the full model
kinetics. �us, it can also be used to verify the choice of case.
In order to show that Eq. 10 is consistent with our previous �ndings, we show that Eq. 10

simpli�es to the (modi�ed) Polanyi-Wigner equation for case (a) (case (c)).

Case (a): kinetically-hindered layer exchange In case (a) the barrier for layer exchange is
su�ciently higher than for desorption, which corresponds to kd,2 >> kle,2→1 and kd,1 >> kle,1→2
in terms of rate constants. As a consequence, we can assume 2kle,2→1(1 − θ) + kd,2 ≈ kd,2 and
kd,1 + 2kle,1→2θ ≈ kd,1. Next, we apply these assumption to Eq. 10, which yields Eq. 11 as an
approximate total desorption rate. From Eq. 11 it is evident that only desorption from the �rst layer
contributes in case (a). �is �nding is identical to our previous �ndings for case (a) as presented in
the main text.

rd
Nad
≈ kd,1θ + 2kle,1→2θ

2 ≈ kd,1θ (11)

Case (c): quasi-equilibrium layer exchange �asi-equilibrium layer exchange is character-
ized by a signi�cantly higher rate of layer exchange than desorption. Hence, the relation between
the rate constants is kd,2 << kle,2→1. From there we conclude 2kle,2→1(1−θ)+kd,2 ≈ 2kle,2→1(1−θ),
which yields Eq. 12 when applied to Eq. 10. Eq. 12 is identical with the modi�ed Polanyi-Wigner
equation derived previously.

rd
Nad
≈ kd,1θ + kd,2

2kle,1→2θ
2

2kle,2→1(1 − θ)
= kd,1

(
θ +

θ2

1 − θ

)
(12)

3.2 Analytical solution for layer exchange equilibrium

As explained in our manuscript and section 6.3, we use the layer-exchange equilibrium layer cov-
erages for the calculation of desorption spectra in case of quasi-equilibrium layer exchange. To this
end, the equilibrium coverage distribution is calculated numerically. For the simple chain geom-
etry, however, an analytical solution for the equilibrium layer distribution exist. We present this
analytical solution in the following.
In layer exchange equilibrium the net layer exchange rate is zero. �is additional condition

introduces a dependence between the layer coverages, so we can express the �rst- and second-layer
coverage as a function of the total coverage. In order to do so we write the net layer exchange rate
as a function of θ2 and θ :

rle
Nad
= −2(4kle,1→2 − kle,2→1)θ

2
2 + 2

(
(4kle,1→2 − kle,2→1)θ + kle,2→1

)
θ2 − 2kle,1→2θ

2 (13)
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Next, we solve the quadric equation rle
Nad
(θ2) = 0 and select the physical solution in order to

obtain θ2(θ). �e �rst layer coverage θ1 can be calculated from the balance equation θ = θ1 + θ2.

θ2 =


1
2

(
θ +

kle,2→1
4kle,1→2−kle,2→1

)
+

√
1
4

(
θ +

kle,2→1
4kle,1→2−kle,2→1

)2
−

kle,1→2
4kle,1→2−kle,2→1

θ2, for 4kle,1→2 < kle,2→1

1
4 θ

2, for 4kle,1→2 = kle,2→1

1
2

(
θ +

kle,2→1
4kle,1→2−kle,2→1

)
−

√
1
4

(
θ +

kle,2→1
4kle,1→2−kle,2→1

)2
−

kle,1→2
4kle,1→2−kle,2→1

θ2, for 4kle,1→2 > kle,2→1

(14)

4 Shi�ed chain geometry

As discussed before we consider a simple geometry in ourmanuscript to show the general in�uence
of layer exchange on the kinetics of desorption. However, we expect that the model geometry
in�uences desorption via hop on top, because the model di�erential equations depend on geometry-
speci�c aspects like the expected number of adsorption sites in the second layer (see derivation
in section 2 of our manuscript). In this section, we consider an additional geometry, in order to
investigate if the model geometry does indeed in�uence the e�ect of layer exchange on desorption.

4.1 Kinetic model

In addition to the simple chain geometry presented in our manuscript, we consider a second ge-
ometry we refer to as shi�ed chain geometry. In the shi�ed chain geometry, the particles in the
�rst layer form one-dimensional chains just like the simple chain geometry. �e adsorption sites
in the second layer, however, are not directly on top of particles in the �rst layer, but shi�ed half a
particle diameter as shown in Fig. S7. As a consequence, every adsorption site in the second layer
has two occupied adsorption sites underneath rather than one. All other model assumptions and
the involved processes stay the same. �e e�ect of this geometry change will be discussed in the
following.

Di�usion For the simple chain geometry we assumed that di�usion within the layers is in equi-
librium. �is assumption (and its motivation) stays the same for the shi�ed chain geometry. Hence,
we can once again assume that the particles are placed randomly on the surface. However, the oc-
cupation probabilities for the second layer change as each adsorption site in the second layer now
requires two occupied adsorption sites underneath. For the shi�ed chain geometry the expected
number of unoccupied adsorption sites in the second layer is Nadθ

2
1 and the expected probability

for an adsorption site in the second layer to be occupied θ2/θ21 . Consequently, the probability for
an adsorption site in the second layer to be unoccupied reads as 1 − θ2/θ21 .

Layer exchange To determine the net layer exchange rate for the shi�ed chain geometry we
need to consider the relevant precursor states for layer exchange from the �rst (second) to the
second (�rst) layer. Layer exchange from the �rst to the second layer requires a free particle in
the �rst layer (i.e., a particle with no particles on top) next to an unoccupied adsorption site in the
second layer. �ese conditions are only ful�lled by the two con�gurations shown in Fig. S8 (a)
(expected probability 2θ31(1 − θ1)

(
1 − θ2/θ21

)2) and (b) (expected probability 2θ41
(
1 − θ2θ21

)3). �us,
the rate of layer exchange from the �rst to the second layer is 2kle,1→2θ

2
1(θ1 − θ2)

(
1 − θ2/θ21

)2.
14



(i)

(ii) (iii)

(iv) (v)

Figure S7: Schematic representation of the shi�ed chain geometry and elementary processes. �e
displayed processes are di�usion (i), layer exchange from the �rst to the second (ii) and
from the second to the �rst layer (iii) as well as desorption from the �rst (iv) and second
(v) layer. Occupied adsorption sites are displayed as �lled spheres, while unoccupied
adsorption sites are shown as empty spheres.

Layer exchange from the second to the �rst layer can only take place if a particle in the second
layer is adjacent to an unoccupied adsorption site in the �rst layer. �is requirement corresponds
to the con�guration shown in Fig. S8 (c) (expected probability 2(1 − θ1)θ2), so the rate for layer
exchange from the second to the �rst layer reads as 2kle,2→1(1− θ1)θ2. Consequently, the net layer
exchange rate for the �rst layer is given by Eq. 15.

rle
Nad
= −2kle,1→2θ

2
1(θ1 − θ2)

(
1 − θ2

θ21

)2
+ 2kle,2→1(1 − θ1)θ2 (15)

Desorption We model desorption from the �rst and second layer with a �rst order Polanyi-
Wigner approach, respectively, as explained for the simple chain geometry in our manuscript.
Again, particles in the �rst layer can only desorb if they are not hindered by particles in the second
layer. Hence, �rst-layer desorption can only occur from three con�gurations as shown in Fig. S8
(d) (expected probability 2θ1(1− θ1)2), Fig. S8 (e) (expected probability 2θ21(1− θ1)

(
1 − θ2/θ21

)
) and

Fig. S8 (f) (expected probability 2θ31
(
1 − θ2/θ21

)2). Consequently, the expected total probability for
a free particle in the �rst layer is (θ1 − θ2)2/θ1 and the �rst-layer desorption rate reads as Eq. 16.

rd,1
Nad
= kd,1

(θ1 − θ2)
2

θ1
(16)

As discussed before desorption from the second layer can always take place as long as there are
particles in the second layer. �us, the second-layer desorption rate is not (directly) e�ected by the
geometry and reads as Eq. 17.

rd,2
Nad
= kd,2θ2 (17)

When combining the rates of layer exchange and desorption, we obtain Eq. 18 and Eq. 19 for
the model di�erential equations.
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Figure S8: Schematic representation of precursor states for the involved processes in the shi�ed
chain geometry. Particles moving in the course of the corresponding process are dis-
played as red spheres, stationary particles as grey spheres. Unoccupied adsorption sites
are displayed as un�lled grey spheres. �e �gure shows the precursor states of layer
exchange from the �rst to the second layer (a and b), layer exchange from the second to
the �rst layer (c) and for desorption from the �rst layer (d-f). Precursor states (a), (b), (c)
and (e) include the displayed con�guration as well as the corresponding mirror image
which is why they are marked with ”2x”.

dθ1
dt
= −2kle,1→2θ

2
1(θ1 − θ2)

(
1 − θ2

θ21

)2
+ 2kle,2→1(1 − θ1)θ2 − kd,1

(θ1 − θ2)
2

θ1
(18)

dθ2
dt
= 2kle,1→2θ

2
1(θ1 − θ2)

(
1 − θ2

θ21

)2
− 2kle,2→1(1 − θ1)θ2 − kd,2θ2 (19)

�e total desorption rate (i.e., the sum of the �rst-layer (Eq. 16) and second-layer desorption rate
(Eq. 19)) for the shi�ed chain geometry reads as Eq. 20.

rd
Nad
= kd,1

(θ1 − θ2)
2

θ1
+ kd,2θ2 (20)

We show simulated desorption spectra for the shi�ed chain geometry in case of quasi-equilibrium
layer exchange at varying initial coverages in section 5. Moreover, the interactive visualisation (see
section 6) provided with this ESI can be used to investigate the in�uence of second-layer desorp-
tion and layer exchange for the shi�ed chain geometry. Brie�y, the desorption spectra show the
same three cases and characteristic features as observed for the simple chain geometry. However,
the e�ect of second-layer desorption is always smaller for the shi�ed chain geometry than for the
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simple chain geometry. �is smaller contribution of second-layer desorption is caused by the fact
that in the shi�ed chain geometry every second-layer adsorption site requires two occupied ad-
sorption sites underneath while it is only one for the simple chain geometry. �us, the number of
adsorption sites in the second layer at a given coverage is always smaller for the shi�ed than for
the simple chain geometry.

4.2 Modified Polanyi-Wigner equation

For the simple chain geometry, we considered a case where only a very small fraction of particles
resides in the second layer. �ese considerations lead to a modi�ed Polanyi-Wigner for second
layer desorption as shown in section 3.1. When applying the same strategy to the shi�ed chain
geometry, we obtain a di�erent modi�ed Polanyi-Wigner (Eq. 21). Comparison of the modi�ed
Polanyi-Wigner equations of the simple and shi�ed chain geometries (Eq. 21 and Eq. 22) shows
that both equations are very similar. However, the equations di�er in the exponent of the coverage
in the contribution of second layer desorption (θ2 for the simple chain and θ3 for the shi�ed chain).
�is �nding supports our expectation that the in�uence of desorption via hop on top depends on
the adsorption geometry. Moreover, we conclude that the contribution of second-layer desorption
is smaller for the shi�ed chain geometry than for the simple chain geometry, because θ3 < θ2 for
θ < 1.0ML.

rd
Nad
≈ kd,1θ + kd,2

2kle,1→2θ
3

2kle,2→1(1 − θ) + kd,2
(21)

In case of quasi-equilibrium layer exchange Eq. 21 simpli�es to Eq. 22.

rd
Nad
≈ kd,1θ + kd,2

2kle,1→2θ
3

2kle,2→1(1 − θ)
= kd,1

(
θ +

θ3

1 − θ

)
(22)

5 Contribution of desorption via hop on top depending on initial
coverage and geometry

Next, we analyse the e�ect of layer geometry and initial coverage on desorption via the hop on
top mechanism. To this end, we consider the case of quasi-equilibrium layer exchange (case (c)),
because case (c) serves as an upper limit for the contribution of desorption via hop on top to sub-
monolayer desorption.†

Desorption spectra In order to elucidate the coverage and geometry dependence of desorption
via hop on top, we present a set of desorption spectra for each geometry in Fig. S9 (a). Both sets of
desorption spectra were calculated based on the same kinetic parameters we use in our manuscript
(see explanation in our manuscript or Tab. 1) and initial coverages between 0.1ML and 1.0ML in
steps of 0.15ML. Fig. S9 (a) shows that desorption spectra with the same initial coverage are similar
for both geometries (high and low opacity curves in Fig. S9 (a)). Especially, both geometries reveal
desorption spectra with the same characteristic features discussed for case (c) in our manuscript
(a single asymmetric peak with a higher peak width and more pronounced low temperature rise

†We consider only systems with a high energy di�erence between the �rst and second layer. �erefore, the second
layer is depopulated by desorption before the system reaches temperatures where desorption from the �rst layer becomes
relevant. �e second-layer occupation relevant for desorption via hop on top, however, is solely created by layer exchange
and, thus, is always smaller or equal to the equilibrium second-layer occupation. As a consequence, the contribution of
desorption via hop on top is maximum in case of layer exchange equilibrium.
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than a �rst-order Polanyi-Wigner peak). However, these features are barely noticeable for small
coverages and becomemore pronounced with increasing coverage (compare the red and blue curve
in Fig. S9 (a)). For an initial coverage of 1.0ML the features caused by second-layer desorption are
developed the most. Hence, this �ndings con�rm our expectation that the contribution of second-
layer desorption increases with coverage as discussed in our manuscript.
Concerning geometry, the di�erences between desorption spectra with the same initial coverage

but a di�erent geometry are small as can be seen in Fig. S9. For small coverages Fig. S9 (a) shows
that the desorption spectra of both geometries are nearly identical (red curves). With increasing
coverage, however, the peaks of both geometries are increasingly di�erent. �e desorption signal
of the simple chain geometry have a higher peak width and smaller maximum desorption rate as
the shi�ed chain desorption signal. Moreover the total shi� in the peak maxima is smaller for the
shi�ed chain geometry than for the simple chain geometry. As these features are characteristic for
the contribution of second-layer desorption, this con�rms our conclusion that desorption via hop
on top contributes more for the simple chain geometry than for the shi�ed chain geometry (see
section 4.2).

Contribution of the ith layer To quantify the in�uence of desorption via hop on top we con-
sider the contribution of the ith layer χi (Eq. 23). �is quantity describes the fraction of particles
desorbing from the ith layer relative to all particles desorbing in a given peak. �us, for the sub-
monolayer desorption peak χ1 quanti�es the contribution of desorption directly from the �rst layer
and χ2 quanti�es desorption via hop on top. By de�nition, the sum of all layer contributions is unity
(i.e.,

∑
i χi = 1).

χi =

∫
peak dtrd,i(t)∫
peak dtrd(t)

(23)

For both geometries discussed in this ESI, we can calculate the layer contributions in case of
quasi-equilibrium layer exchange analytically. In order to do so we use r1

Nad
≈ kd,1θ as well as

the modi�ed Polanyi-Wigner equations derived in section 3.1 and 4.2, respectively (Eq. 12 and Eq.
22). We insert these equations in Eq. 23 and solve the integral. In doing so, we obtain Eq. 24 for
χ1 in case of the simple chain geometry and Eq. 25 in case of the shi�ed chain geometry. �e
contribution of the second layer χ2 can be calculated by χ2 = 1 − χ1

χ1,simple = 1 − 0.5θ (24)

χ1,shi�ed =
1
√
3
tan−1

(
2θ − 1
√
3

)
− 0.5 ln

(
θ2 − θ + 1

)
−

1
√
3
tan−1

(
−

1
√
3

)
(25)

In Fig. S9 (b) we present the contribution of �rst-layer (red) and second-layer (blue) desorption
for submonolayer desorption as functions of the total peak coverage θmono for the simple chain
(high opacity) and shi�ed-chain (low opacity) geometries. Note that the peak coverage θmono is
equal to the initial coverage θ as desorption spectra in case (c) show no second-layer desorption
signal for initial coverages θ < 1 (see Fig. S9 (a)). Fig. S9 (b) shows that second-layer desorption
does not contribute in the limit of zero coverage independent of the geometry. However, with in-
creasing coverage the contribution of second-layer desorption increases and reaches its maximum
when the �rst layer is fully occupied (θmono = 1.0ML). �emaximum contribution of second-layer
desorption for the simple chain (shi�ed-chain) geometry is χ2,simple = 0.50 (χ2,shi�ed ≈ 0.40), i.e.,
50% (40%) of the particles residing in the �rst layer desorb via the second layer. Moreover, Fig. S9
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Figure S9: Comparison of the simple chain and shi�ed chain geometries. Results for the simple
(shi�ed) chain geometry are displayed with high (low) opacity. (a) Set of desorption
spectra with di�erent initial coverages θ0 calculated for a two-layer system according
to our model. (b) Contribution χi for �rst-layer (second-layer) desorption as a function
of the total integral over the monolayer desorption signal in red (blue). �e analytical
solutions are displayed as lines and numerical values calculated for the simulated des-
orption spectra in (a) are displayed as points. �e temperatures Tint,start and Tint,end in (a)
are the limits used for peak integration in order to calculate the contributions displayed
in (b).

(b) shows that the contribution of second-layer desorption is always smaller in case of the shi�ed
chain geometry compared to the simple chain geometry. As discussed before, this smaller contri-
bution of second-layer desorption is caused by a lower number of adsorption sites in the second
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layer for the shi�ed chain geometry compared to the simple chain geometry (θ21 ≤ θ1) (see section
4.1). We conclude that the contribution of second-layer desorption decreases with the number of
adsorption sites in the second layer.

6 Calculation of desorption spectra

In this section, we provide details concerning the calculation of desorption spectra from the model
equations derived in the main text, e.g., the calculation of initial coverages and the numerical so-
lution of layer exchange equilibrium. �e complete javascript code used for our calculations is
published online as an interactive visualisation (h�ps://doi.org/10.4119/unibi/2955951).

6.1 Initial coverages: ballistic model for dosing

In case of quasi-equilibrium layer exchange the initial coverage distribution prepared by dosing
does not in�uence the desorption spectrum as the system enters its equilibrium state prior to des-
orption. For a kinetically-hindered layer exchange, however, the initial �rst- and second-layer
coverages have a signi�cant in�uence on the observed desorption spectra as shown in section 2.2.
Consequently, it is necessary to derive a realistic initial coverage distribution to analyse the impli-
cations of a kinetically-hindered layer exchange. To this end, we develop a simple ballistic model
for dosing to understand the general in�uence of dosing on the appearance of desorption spectra.
We do not intent to describe special dosing scenarios (e.g., dosing with high kinetic energies in a
molecular beam) with this simple ballistic model.
Our model is based on the assumption that particles are hi�ing the sample surface randomly

with a given collision rate. All particles colliding with an unoccupied adsorption site (in the �rst
or second layer) stick to the surface with a certain probability while particles colliding with an
occupied adsorption site do not adsorb. �ereby, we describe both, collision rate and sticking
probability, in terms of one e�ective �ux f as a function of time t. Furthermore, we assume that
the sticking coe�cients for the �rst and second layer are equal, because we expect this to be the
case for low temperatures where close to all colliding particles stick. For higher temperatures,
however, this assumption might not be suitable.
Moreover, we consider a case where particles do not leave the layer they initially adsorbed to.

�is choice is motivated by the procedure of a typical TPD experiment and the intended application
of the dosing model to cases (b) and (c). In a typical TPD experiment, particles are deposited onto
a sample surface kept at temperatures much lower than the desorption temperature in order to
prevent desorption prior to the actual experiment. As we consider cases where the rates of layer
exchange are comparable to or smaller than the desorption rate at the desorption temperature, we
conclude that layer exchange is not activated at the temperature of particle deposition.
Please note that our ballistic model is not applicable when the barrier for layer exchange is

su�ciently low resulting in layer exchange during dosing. In that case, however, we can assume
that layer exchange is signi�cantly faster than desorption, because desorption— in contrast to layer
exchange — does not take place during dosing. �us, we can calculate the coverage distribution
without a model for dosing by solving the equilibrium condition for layer exchange (see section
6.3).
In case of the simple chain geometry discussed in the main text the model assumptions presented

above translate into Eq. 26 and Eq. 27 for the adsorption rates in the �rst and second layer rad,1
Nad

and
rad,2
Nad

, respectively. �e total adsorption rate rad
Nad

is given by Eq. 28.
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rad,1
Nad
=

dθ1
dt
= f (t)(1 − θ1) (26)

rad,2
Nad
=

dθ2
dt
= f (t)(θ1 − θ2) (27)

rad
Nad
=

dθ
dt
= f (t)(1 − θ2) (28)

�e derived inhomogeneous di�erential equations for the �rst- and second-layer coverages (Eq.
26 and Eq. 27) form a coupled di�erential equation system, where Eq. 27 depends on θ1 and θ2,
but Eq. 26 only depends on θ1. �erefore, we can �rst solve Eq. 26 independently and then use the
solution to solve Eq.27. �is yields Eq. 29 and Eq. 30 for the coverages in the �rst and second layer
as a function of time, respectively, where F(t) is the accumulated e�ective �ux as de�ned by Eq.
31.

θ1(t) = 1 − e−F(t) (29)

θ2(t) = 1 − (1 + F(t))e−F(t) (30)

F(t) =
∫ t

0
dτ f (τ) (31)

�e total coverage as a function of time reads as Eq. 32.

θ(t) = 2 − (2 + F(t))e−F(t) (32)
Eq. 29 and Eq. 30 can be used to calculate the initial coverage distribution as a function of the

accumulated �ux. For the calculation of theoretical desorption spectra, however, it is more useful
to express the (initial) �rst- and second-layer coverages as a function of the dosed total coverage
θ instead of the accumulated �ux F(t). Hence, we inverted Eq. 32 which yields Eq. 33 for the
total coverage as a function of the accumulated �ux, whereW is the product logarithm function (or
Lambert W function). We can use Eq. 33 to calculate the accumulated �ux corresponding to each
total coverage, which, in turn, can be used to calculate the wanted initial coverage distribution.

F(t) = 2 −W((θ − 2)e−2) (33)
Fig. S10 shows the �rst- and second-layer coverages calculated with our ballistic model as func-

tions of the accumulated �ux (a) and the total coverage (b). In terms of accumulated �ux the rise in
total coverage (black) is largely identical with the increase of the �rst-layer coverage (red) for very
small F(t) (S10 (a)). With increasing accumulated �ux (and total coverage), however, the number
of unoccupied adsorption sites in the �rst layer decreases, while unoccupied adsorption sites in the
second layer are created. Hence, more and more particles adsorb in the second layer, which leads to
a signi�cant second-layer coverage. For example at a dosed total coverage of 0.5ML the coverages
of the �rst and second layer are approximately 0.4ML and 0.1ML, which means that 20 % of the
particles on the surface reside in the second layer. We conclude that — as part of our ballistic model
— adsorption does not happen layer by layer, but the �rst and second layer are simultaneously. As
a consequence, we expect the kinetics of dosing to have a great impact on the desorption spectra
of systems where layer exchange is kinetically-hindered (i.e., particles cannot leave the layer they
adsorbed to).
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Figure S10: Coverages in the �rst (red) and second (blue) layer as calculated by our ballistic model.
�e coverages are shown as functions of the accumulated e�ective �ux F(t) (a) and the
total coverage θ (b). �e total coverage as a function of the accumulated �ux (black) is
shown in (a).

6.2 Numerical integration of the full di�erential equation system

Desorption spectra were calculated numerically from a given set of initial coverages and kinetic
parameters. To this end, the �rst- and second-layer coverages as a function of time (or tempera-
ture) were calculated by numerical integration of Eq. 6 and Eq. 7 with a fourth order Runge-Ku�a
algorithm. Desorption rates were calculated from the coverages with Eq. 8. As part of this cal-
culation we altered the standard Runge-Ku�a algorithm by making the step size variable with the
rates of the involved processes. �e step size ∆t was determined by the timescale of the fastest
process as shown in Eq. 34. We base the de�nition of a process’ timescale on the lifetime of a �rst
order process τ = 1/k = r/θ . Additionally, we introduced a prefactor of 0.01, which means that we
calculate 100 points per lifetime of the fastest process (the choice of exactly 100 points is arbitrary).
To limit the maximum calculation time and prevent missing relevant features we chose time step
limits of ∆tmin = 1 × 10−6 s and ∆tmax = 1 s.

∆t = 0.01min
(
θ1Nad
rd,1

,
θ2Nad
rd,2

,
θ1Nad
rle,1→2

,
θ2Nad
rle,2→1

)
(34)

6.3 Numerical integration procedure in case of quasi-equilibrium layer exchange

We discussed before in the main text that a normal Runge-Ku�a algorithm reaches its limitations
in terms of computation time for small barriers of layer exchange. Given that the barrier of layer
exchange is very small compared to the desorption barrier, the rates of layer exchange are magni-
tudes higher than the desorption rate. Hence, an accurate numeric integration requires very small
time steps on the timescale of a TPD experiment. �is time step, in turn, increases the computa-
tion time drastically. While long computation times might not be a problem when working with
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very powerful computers, standard personal computers will reach their limits easily. �ese limits
are especially relevant for the calculation of multiple desorption spectra or future applications like
the ��ing of measurement data. However, the calculation only becomes computationally intensive
when layer exchange is magnitudes faster than desorption. �us, this problem with computation
power is only relevant for systems where case (c), quasi-equilibrium layer exchange, is applicable
(see section 2.1). As a consequence, we can treat layer exchange implicitly by calculation of the
�rst- and second-layer coverages from the total coverage rather than solving the full di�erential
equation system. �is way we can decrease the computing e�ort signi�cantly as will be explained
in the following.
If the system is in a state of quasi-equilibrium layer exchange on the timescale of desorption the

net-layer exchange rate (Eq. 35) is zero (except for a small time interval directly a�er desorption
of a particle). �is condition creates a relation between the coverages of the �rst and second layer.
Hence, we can express the layer coverages as functions of the total coverage θ by solving rLE

Nad
= 0.

In order to do so, we rewrite Eq. 35 as a function of the total coverage and the second-layer coverage
by using the coverage balance θ1 = θ − θ2 (see Eq. 36). From there we calculate the zero of Eq.
36 numerically‡ with a Newton-Raphson algorithm to obtain the second-layer coverage in case
of equilibrium. �e coverage of the �rst layer can be calculated from θ and θ2 with the coverage
balance.

rle
Nad
(θ1, θ2) = −2kle,1→2(θ1 − θ2)

2 + 2kle,2→1(1 − θ1)θ2 (35)

rle
Nad
(θ, θ2) = −2kle,1→2(θ − 2θ2)2 + 2kle,2→1(1 − θ + θ2)θ2 (36)

Next, we apply the equilibrium condition on the model di�erential equations 6 and 7. �is leads
to the much simpler Eq. 37. Here, it is important to note two things: First, Eq. 37 only depends
on one variable as θ1 and θ2 are expressed as functions of the total coverage, and second, the rates
of layer exchange are not part of Eq. 37 because they do not change the total coverage. As a
consequence, the time step for the numerical integration of Eq. 37 only depends on the desorption
rate and not on the rates of layer exchange. Hence, a large di�erence in the rates of layer exchange
and desorption does not lead to problems with the computational e�ort any more. Instead, we need
to solve Eq. 36 for every calculated point in order to determine the layer coverages. In practical
applications, however, it is much faster to �nd the zero of Eq. 36 for a bigger time step than
integrating the full di�erential equation system (Eq. 6 and Eq. 7) with a very small time step.
As a consequence, this calculation strategy based on the equilibrium layer coverages solves the
issues with computation time in case of low barriers for layer exchange. �ese explanations can
be veri�ed by comparing the simulation algorithms in the interactive visualisation published with
this work (see section 6).

dθ
dt
= kd,1θ1(θ) + (kd,2 − kd,1)θ2(θ) (37)

We con�rm that the proposed simpli�ed simulation algorithm does indeed yield the same re-
sults as the full simulation in case of layer exchange equilibrium (case (c)). In order to do so, we
carried out calculations with the full di�erential equation system for the limiting parameter set
between cases (c) and (b) (cyan line in Fig. S3) for a minimal time step of 1 × 10−8 s. �e results of

‡For the simple chain geometry an analytical solution of Eq. 36 exists as well (see section 3.2).
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these calculations show excellent agreement with calculations relying on the layer exchange equi-
librium algorithm, so we expect the calculations with the layer exchange equilibrium algorithm
yield excellent results as long as case (c) applies.
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