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A Calculation of the oxygen partial pressure from gas-phase equilibrium
In order to use these pO2 dependent material laws, the local pO2 is estimated from the gas-phase equilibrium of the local
atmospheric conditions. The pO2 depends on the H2 and H2O concentrations according to the dissociation of water:

2H2O⇔ 2H2 +O2 (1)

The equilibrium constant of this reaction is given by1:

Kp(T ) = exp
(

G0

RT

)
=

(pH2O)
2

(pH2)
2 pO2

(2)

The temperature dependent Gibbs free energy G0 of the reaction can be derived from Shomate parameters as described
by Linder et al.2 on a kJ/mol basis for T ≥ 373.15K:

G0 =−241.2+38.24 ·10−3T +14.15 ·10−6T 2−3.722 ·10−9T 3 (3)

Therewith, the oxygen partial pressure pO2 at a given temperature can be calculated from the partial pressures of
hydrogen and water:

pO2 =

(
pH2O

pH2

)2 1
Kp(T )

(4)

B Dusty-gas model (DGM) for the gas transport in the MIEC-pores
Within the porous MIEC anode, the transport and the reaction of the gas species needs to be described. The continuity
equations for the gas species reads:

εpore
∂c1

∂ t
+∇ ·N1 = R1 (5)

εpore
∂c2

∂ t
+∇ ·N2 = R2 (6)

where c1, c2 are the molar concentrations, N1, N2 are the molar flux densities and R1, R2 are the reaction rates for
hydrogen (species 1) and water vapour (species 2) , respectively. Thereby, the consumption rate of hydrogen is equal to
the production rate of water vapour, which is equal to the production rate of oxygen ion vacancies:

R2 =−R1 = Rvac, (7)

where Rvac is defined in Eq. 11 of the research article. The corresponding boundary conditions for the continuity equations
5 and 6 are documented in section 2.3.10 of the research article.

For the molar flux densities N1 and N2, the effect of the porous microstructure needs to be considered. In nanoporous
materials, gas diffusion is controlled by collision of gas molecules with the pore walls. In this case the mean free path
of the gas molecules is longer than the characteristic length of the pores so that we enter the Knudsen diffusion regime.
Modern high performance MIEC electrodes are usually very fine-grained in order to increase the specific surface area
and associated reactivity. In most cases, the pore size in modern MIEC electrodes is in the µm to sub-µm scale, where
both Knudsen and bulk diffusion become relevant. It is generally agreed3–5 that the dusty-gas model (DGM) is the most
convenient approach for modelling combined bulk and Knudsen diffusion. Therefore, in our approach, the diffusion in
the porous CGO-layer is modelled with the dusty-gas model.

The DGM is an extension of the Stefan Maxwell model, where the pore phase (=”dust”) is treated as an additional,
stationary species. Helpful explanations and different versions of the DGM can be found in these references3,6–8 for the
interested reader. The original DGM for a binary gas mixture can be expressed as follows6:

N1

D1Kn,eff
+

x2 N1− x1 N2

D12,eff

=− 1
Rgas T

(
p∇x1 + x1 ∇p+ x1 ∇p

kflow p
D1Kn,eff µvisc

) (8)
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N2

D2Kn,eff
+

x1 N2− x2 N1

D12,eff

=− 1
Rgas T

(
p∇x2 + x2 ∇p+ x2 ∇p

kflow p
D2Kn,eff µvisc

) (9)

where x1, x2 are the molar fractions for hydrogen and water, respectively. Furthermore, p is the pressure, kflow the gas-flow
permeability and µvisc the dynamic viscosity of the gas mixture. Note that the dynamic viscosity of hydrogen is used as
an approximation for the viscosity of the gas mixture, valid for low water fractions. D1Kn,eff and D2Kn,eff are the effective
Knudsen diffusion coefficients for the hydrogen and water and D12,eff is the binary diffusion coefficient between hydrogen
and water. The diffusion coefficients are determined in section C.

An explicit version of the DGM for a binary system was derived by Liu et al.6 and reads:

N1 =−
D12,eff D1Kn,eff

D12,eff + x1 D2Kn,eff + x2 D1Kn,eff
∇c1

−
D1Kn,eff D2Kn,eff

D12,eff + x2 D1Kn,eff + x1 D2Kn,eff

x1 ∇p
Rgas T

− c1
kflow

µvisc
∇p

(10)

N2 =−
D12,eff D2Kn,eff

D12,eff + x1 D2Kn,eff + x2 D1Kn,eff
∇c2

−
D2Kn,eff D1Kn,eff

D12,eff + x1 D2Kn,eff + x2 D1Kn,eff

x2 ∇p
Rgas T

− c2
kflow

µvisc
∇p

(11)

where c1 and c2 are the molar concentrations of hydrogen and water vapour, respectively. To achieve a better overview, the
terms in Eqs. 10 and 11 can be separated into diffusive and convective parts. Starting from Eq. 10 and Eq. 11, the terms
of the binary DGM model can be summarized in diffusive and convective parts with summarized diffusion coefficients as
derived by Liu et al.6:

N1 = N1,diff +N1,conv (12)

=−DDG1 ∇c1 + c1u (13)

N2 = N2,diff +N2,conv (14)

=−DDG2 ∇c2 + c2u (15)

Thereby, the convective gas velocity can be formulated as:

u =

(
1

RgasT ctot
DDG3 +

kflow

µvisc

)
∇p (16)

The summarized diffusion coefficients read:

DDG1 =
D12,eff D1Kn,eff

D12,eff + x1D2Kn,eff + x2D1Kn,eff
(17)

DDG2 =
D12,eff D2Kn,eff

D12,eff + x1D2Kn,eff + x2D1Kn,eff
(18)

DDG3 =
D1Kn,eff D2Kn,eff

D12,eff + x1D2Kn,eff + x2D1Kn,eff
(19)

The pressure and thus the pressure gradient is linked to the total molar gas concentration ctot through the ideal gas
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law:

p = ctot Rgas T (20)

∇p = Rgas T ∇ctot (21)

where ctot = c1 + c2 (22)

C Determination of the diffusion coefficients
For the DGM and for the Stefan-Maxwell model, the binary diffusion coefficients need to be determined. Todd and
Young9 studied different approaches for the determination of binary diffusion coefficients and concluded that the approach
according to Fuller et al.10 provides the most accurate results for the temperature range relevant for SOFC’s with an
estimated mean error of 5% and a maximum error of about 20%. The diffusion coefficients according to Fuller et al.10

read:

D12,0 =
0.00143T 1.75

pM1/2
12

(
V 1/3

1 +V 1/3
2

)2 (23)

with
M12 = (1/M1 +1/M2)

−1 (24)

where Mi is the molecular mass and Vi the diffusion volume. These parameters are summarized in table 1 for hydrogen
and water vapour.

Table 1 Parameters for the calculation of the binary diffusion coefficients9

Gas species Molar mass Mi diffusion
volume Vi

Molecular
diameter
dMolec

H2 2.016kg/kmol 6.12 2.40 Å
H2O 18.015kg/kmol 13.10 2.75 Å

To account for the effect of the microstructure, the binary diffusion coefficient needs to be corrected to get the effective
transport property:

D12,eff = Mpore D12,0 (25)

where the microstructure factor Mpore for the pore phase is defined in Eq. 4 of the research article.
The intrinsic Knudsen diffusion coefficient using the kinetic theory of gases is given by11:

Di,Kn,0 =
1
3

dpore v̄ (26)

v̄ =

√
8kB T
Mi π

(27)

where v̄ is the mean thermal velocity and dpore is a characteristic pore diameter of the porous structure.
To account for the effect of the microstructure, the intrinsic Knudsen diffusion coefficients need to be corrected to get

the effective Knudsen diffusion coefficients:
DiKn,eff = Mpore,Kn DiKn,0. (28)

Thereby, i denotes species 1 (hydrogen) or 2 (water vapour) and Mpore,Kn is the microstructure factor for the Knudsen
diffusion mechanism. Note that the intrinsic Knudsen diffusion coefficient Di,Kn,0 in Eq. 26 accounts for the effect of the
scattering with the walls of the small pores, but not for the microstructure characteristic itself. An appropriate picture for
the intrinsic Knudsen diffusion illustrated in Fig. 1 a) is a small pipe with diameter dpore, porosity εpore = 1, tortuosity τpore =

1 and without bottlenecks i.e. βpore = 1, resulting in an M-factor Mpore,Kn = 1. In the presence of a porous microstructure
as illustrated in Fig. 1 b), the Knudsen diffusion will be additionally hindered due to porosity εpore < 1, tortuous pathways
and bottlenecks, resulting in an M-factor Mpore,Kn < 1. However, a quantitative relationship between the microstructure
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pored
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a) b)

Fig. 1 Illustration of the microstructure effects on the Knudsen diffusion: a) intrinsic Knudsen diffusion with Mpore,Kn = 1, b) effective Knudsen
diffusion with Mpore,Kn < 1 due to porosity εpore < 1, tortuous pathways and bottlenecks.

parameters εpore, τpore and βpore like for the bulk diffusion in equation 4 of the research article is not available for the
Knudsen diffusion yet. The "bulk" microstructure factor Mpore and the Knudsen structure factor Mpore,Kn might be similar,
but not necessarily equal, as different processes are hindering the transport for the two transport mechanisms. Therefore,
the microstructure factor Mpore,Kn for Knudsen diffusion needs to be determined indirectly, for example, by running a
suitable transport simulation, for which we use the GeoDict12 software. In GeoDict, Mpore,Kn is determined using a random
walk method. Moreover, the characteristic pore diameter dpore of the porous structure in Eq. 26 is not a well defined
quantity and is therefore determined from the random walk simulation as the mean path length between two consecutive
hits of molecule and wall.

D Knudsen number
Even if the binary diffusion coefficients are needed for the model, the unitary diffusion coefficients are helpful as a
reference and enable the calculation of the Knudsen number. The unitary diffusion coefficient according to the kinetic
theory of gases reads13:

Dbulk,0 =
1
3

λ v̄ (29)

λ =
kBT√

2πd2
Molec p

(30)

where λ is the mean free path between collisions of gas molecules, v̄ the mean thermal velocity and dMolec is the
diameter of the molecule. The Knudsen number is the ratio of the transport by bulk diffusion to the Knudsen diffusion
and therewith the ratio of the mean free path and the pore diameter:

Kni,0 =
Di,0

DiKn,0
=

λ

dpore
(31)

Depending on the Knudsen number we end up with three different transport regimes:
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• Kn << 1: dominated by bulk diffusion

• Kn≈ 1: by bulk and by Knudsen diffusion

• Kn >> 1: dominated by Knudsen diffusion

As mentioned, the M-factor for the Knudsen diffusion can differ from the M-factor for the bulk-diffusion. We can thus
formulate an effective Knudsen number Kneff relating the effective bulk and Knudsen diffusivity in the same manner as in
equation 31:

Kni,eff =
Di,eff

DiKn,eff
= Kni,0 ·

Mpore

Mpore,Kn
(32)

The effective Knudsen number Kneff also accounts for the different influences of the microstructures on the bulk and
Knudsen diffusion.

E Stefan-Maxwell formulation for the gas transport in the stagnant gas layer
There is a stagnant gas layer above the electrode, where the gas transport is governed by diffusion and not by convection
of the excess fuel supply. The thickness of this stagnant gas layer strongly depends on the flowrate and on the experimental
setup of the button cell. For our standard simulations, a quite small stagnant gas layer thickness of LStag = 0.2mm is used.
This value was estimated from a flow simulation of a particular stagnation point-flow like setup (see SM section C).

The continuity equation for the stagnant gas layer reads:

∂c1

∂ t
+∇ ·N1 = 0 (33)

∂c2

∂ t
+∇ ·N2 = 0 (34)

where N1, N2 are the molar flux densities for hydrogen and water vapour, respectively. Boundary conditions are docu-
mented in section 2.3.10 of the research article.

The diffusion in the stagnant gas layer is modelled with the Stefan-Maxwell3,7 equations with the following assump-
tions:

• The relation N2 =−N1 for the water vapour and hydrogen fluxes respectively is used, in conjunction with the relation
x2 = 1− x1. Both relations are valid in the absence of any chemical reactions.

• The influence of the pressure gradient for the diffusive flux is neglected.

With these assumptions, the original Stefan-Maxwell equations can be simplified to the following explicit expressions
for the hydrogen and water vapour fluxes, respectively:

N1 =−
D12,eff

Rgas T
p∇x1 =−D12,eff ∇c1 (35)

N2 =−
D12,eff

Rgas T
p∇x2 =−D12,eff ∇c2. (36)

In the following, the derivation of this simplified version of the Stefan-Maxwell is presented. The original Stefan-
Maxwell3,7 equations for a binary mixture reads:

x2N1− x1N2

D12,eff
=− 1

RgasT
(p∇x1 + x1 ∇p) (37)

x1N2− x2N1

D12,eff
=− 1

RgasT
(p∇x2 + x2 ∇p) (38)
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Using N2 =−N1 and x2 = 1− x1 we get:

(1− x1)N1 + x1N1

D12,eff
=− 1

RgasT
(p∇x1 + x1 ∇p) (39)

We can solve for N1:

N1 =−
D12,eff

RT
(p∇x1 + x1 ∇p) (40)

We neglect the influence of the pressure gradient for the diffusive flux and therewith we get relations for N1 and N2

respectively, used in section E , which are repeated here for completeness:

N1 =−
D12,eff

RgasT
p∇x1 =−D12,eff ∇c1 (41)

N2 =−
D12,eff

RgasT
p∇x2 =−D12,eff∇c2 (42)

Because of the different molar masses of hydrogen and water, an equal molar flux leads to a higher water mass flux
than hydrogen mass flux. Therewith, a convective part for transport is needed. The associated gas-flow velocity in the
stagnant gas layer is the so-called Stefan-velocity u and obeys the continuity equation:

∇ · (ρu) = R1 +R2 (43)

As the reaction terms are zero in the stagnant gas layer, the velocity u is constant and can be expressed as:

u =
N1M1 +N2M2

ρ
(44)

The presence of a convective velocity gives rise to a pressure gradient according to darcy’s law. However, as we neglect
the influence of this pressure gradient on the diffusive transport, the convective and the diffusive fluxes are decoupled.
Therewith, the velocity in the stagnant gas layer can be determined as a post-processing property. This is in contrast to
the gas-flow velocity in the porous MIEC-layer, where the full coupling is accounted for based on the DGM.

F Estimation of the stagnant gas layer thickness
To estimate the stagnant gas layer thickness, a CFD flow simulation is performed for the specific axial-symmetric setup
shown in Fig. 2 a). The inflow velocity is prescribed as vin = 0.023m/s, which corresponds to a flowrate of 200ml/min.
The resulting flowfield and streamlines are shown in Fig. 2 b).

As an estimation of the thickness of the stagnant gas layer, the zone above the electrode where the viscous forces
Fvisc exceed the inertia forces Finertia is used. In this zone, the gas transport will be dominated by diffusion and not by
convection. The viscous and the inertia forces are given by:

Fvisc = µviscγ̇ (45)

Finertia = |ρ (~v ·∇)~v| (46)

where µvisc is the dynamic viscosity, γ̇ the shear rate, ρ the density of hydrogen and~v the gas velocity.
In Fig. 2 c), the region where the diffusion dominates over the convective transport (i.e. Fvisc > Finertia) is colored in

red. From this plot, a stagnant gas layer thickness of about 0.2 mm can be estimated. Note that the stagnant gas layer
thickness strongly depends on the flowrate and the experimental setup!

1–12 | 7



inlet

Outlet

wall

wall
ax

is

a) 

b)

v / m/s

electrode

electrode

electrode

c)

convection dominated

diffusion dominated

Fig. 2 Axialsymmetric CFD flow simulation using Comsol Multiphysics to estimate the stagnant gas layer thickness: a) dimension and boundary
conditions of the setup, b) flowfield and streamlines c) Indication of convection dominated (blue) and diffusion dominated (red) gas transport regimes.

G Derivation of the averaging of the surface reaction overpotential
Note that the surface reaction overpotential ηSR is a distributed quantity which varies along the CGO-layer thickness. To
yield an effective overpotential ηSR,eff due to the total surface reaction process, we first formulate the power loss Ptot =UI
associated with the surface reaction process:

Ptot =

L∫
0

ηSRiSRA1Ddx (47)

where A1D is the cross section of the 1D simulation in the y-z-plane. For convenience, we reformulate to a power
density:

ptot =
Ptot

A1D
=

L∫
0

ηSRiSRdx (48)

To get the averaged surface reaction overpotential ηSR,avg, we can simply divide the power density by the average
current density Jcharge to get the final expression Eq. 37 of the research article, which is repeated here for convenience:

ηSR,avg =
ptot

Jcharge
=

1
Jcharge

L∫
0

ηSRiSRdx (49)

1–12 | 8



H Fit function for the oxygen-nonstoichiometry δ

The fit function used to describe the oxygen-nonstoichiometry δ as a function of the temperature T and the oxygen partial
pressure pO2 for the experimental date discussed in section 2.4.2 of the research article is expressed as:

log(δ ) =−1
4
(log10 (pO2)+bT )

+min
(

b1

(
log10 (pO2)−bT 0 +bT +

b2

b1

)
,0
) (50)

With the parameters:

bT = aT 1T 2 +aT 2T +aT 3 (51)

bT 0 = aT 1T 2
0 +aT 2T0 +aT 3 (52)

T0 = 1273.15K

aT 1 = 3.754717722603253e−05 (53)

aT 2 =−0.120640040021060 (54)

aT 3 = 1.116305561104715e+02 (55)

b1 = 0.159431946658546 (56)

b2 = 2.357177536920600 (57)

A reasonable agreement of the fit function to the experimental data is achieved as shown in Fig. 5 in section 2.4.2 of
the research article , which is sufficient for the purpose of the current study.

I Calculation of the mobility and diffusivity of the charge carriers
The conductivity of the charge carriers is related to the mobility µ according to Eq. 53 of the research article. As the
charge carriers are assumed to be transported by drift and diffusion according to Eqs. 5 and 6 of the research article, the
mobility and diffusivity of the charge carriers is required. Therefore, the mobility of vacancies and electrons is determined
using Eq. 53, Eq. 51 and Eq. 52 of the research article with a reference oxygen partial pressure of pO2, ref = 10−19 bar and
a reference temperature of Tref = 850 ◦C.

µeon =
σeon(Tref, pO2, ref)

F2 ceon,eq(pO2, ref)
(58)

µvac =
σeon(Tref, pO2, ref)

F2 cvac,eq(pO2, ref)
(59)

where ceon,eq and cvac,eq are defined in Eqs. 48 and 49 of the research article. The corresponding diffusivities of the charge
cariers in CGO10 are then calculated with the Nernst-Einstein relation Eq. 7 and are reported in table 1 of the research
article. Note that the pO2

−1/4-dependency is included in the drift-diffusion Eqs. 5 and 6 of the research article due to
the multiplication of the mobility with the charge carrier concentrations, which depends on the oxygen-nonstoichiometry.
However, the oxygen-nonstoichiometry δ does not simply show a pO2

−1/4-dependency over the whole range, i.e. for
oxygen-nonstochiometries of log(δ )>−1, the linear dependency deviates from pO2

−1/4 (see Fig. 5 of the research article).
However, in the current study, the fuel composition is not varied and the operating point is in a range where the pO2

−1/4-
relation holds.

According to the drift-diffusion Eq. 5 of the research article, a dependency of the ionic conductivity on the pO2 is
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assumed via the multiplication of the vacancy concentration with their mobility. However, no such dependency is reported
for the ionic conductivity by Steele14 as expressed in Eq. 51 of the research article. From Yasuda et al.15 a similar relation
for the ionic conductivity without dependency on the oxygen partial pressure is suggested. In contrast, Wang et al.16

suggested that the ionic conductivity might show a pO2
−1/4-dependency according to the additional vacancies introduced

for low oxygen partial pressures. For simplicity, we follow the assumptions of Wang et al.16, which are consistent with
our model assumptions according to Eqs. 5 and 6 of the research article, assuming the vacancy transport by drift to be
proportional to the vacancy concentration cvac.

J Estimation of the exchange reaction rate k0

The exchange reaction rate k0 is hard do be estimated from EIS measurements in a reliable way, because of the influence of
the microstructure and because of the overlapping processes of e.g. gas concentration impedance. Gerstl et al.17 conducted
thin-film model electrode experiments with CGO20, reporting an initial surface reaction resistance of ASRSR,TF = 10Ωcm2

operated in an atmosphere x1 = 2.5% and x2 = 2.5% in Ar.
For our estimation we now assume that the surface reaction resistance per surface area for CGO20 thin-film electrodes

is in the same range as for porous CGO10 electrodes. With this approach, we can simply scale the resistance to the much
higher porous surface of the porous CGO electrode. According to the microstructure analysis, the pore surface area per
porous layer is S = 2.68 µ2m/µ3m. Multiplying by the CGO-layer thickness, we get the pore surface area per cell-surface
area:

Stot = SL (60)

Assuming a uniform distribution of the reaction, we can now estimate the surface reaction resistance of the porous
electrode for a electrode CGO-layer thickness of L = 100µm:

ASRSR,porous =
RSR,TF

Stot
=

RSR,TF

S3DL
= 0.037Ωcm2 (61)

The exchange reaction rate is now tuned to result in approximately this value for the surface reaction resistance ASRSR

as shown in Fig. 10 of the research article.
Another reference of Chueh et al.18 for the surface reaction resistance yields very similar values, where the surface

reaction resistance has been determined for patterned thin-film electrodes based on SDC (Sm0.2Ce0.8O1.9−δ ). The surface
reaction impedance for pH2 = 0.13atm, xH2O = 0.0057atm and a reaction site density of AR = 0.75 was measured to be
approximately RSR,TF,pattern = 10Ωcm2.

Despite the uncertainties (operating conditions, different ceria compositions, thin-film v.s. porous material etc. ) of
these estimation, it can serve as reference to fit the right order of magnitude of the surface reaction resistance.

K Peak frequency of the gas diffusion impedance process
In Fig. 10 b) of the research article it is illustrated that the uncoupled gas diffusion impedance process with a peak fre-
quency around 2kHz is forced to the frequency range of the surface reaction resistance / chemical capacitance process
below 1Hz. In this section, experimental examples from literature illustrating this observation shall be discussed. More-
over, the order of magnitude of the frequency range for the uncoupled gas diffusion impedance process is confirmed by an
analytical estimation.

Primdahl and Mogensen19 performed EIS measurements on button cell configurations with pronounced gas diffusion
effects. The EIS-spectra of the symmetric Ni/YSZ cell is shown in Fig. 3. In this configuration, the gas diffusion impedance
process has a peak frequency around 25Hz and is visible as a well distinguishable process, because the HOR-process is in
the kHz-regime. This is an example for a gas diffusion impedance process considerably above 1Hz.

The peak frequency of a gas diffusion impedance can be estimated by the following equation19:

f0 =
2.53 ·Deff

2πLDiff
2 (62)

where LDiff is the diffusion length and Deff the effective diffusion coefficient. This estimation provided reasonable agree-
ment with measurements for the data of Primdahl and Mogensen19. In order to estimate the expected peak frequency for
the uncoupled gas impedance process in Fig. 10 b) of the research article, we estimate an average diffusion coefficient for
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the stagnant gas layer and the porous electrode:

Deff = JH2

LDiff

∆c1
(63)

where JH2 is the hydrogen molar flux and ∆c1 is the total hydrogen concentration change over the diffusion length LDiff

from the simulation results. For the diffusion length LDiff the sum of the stagnant gas layer and electrode thickness is used:
LDiff = LStag +L.

25 Hz

Gas diffusion

HOR

1 kHz

Fig. 3 Impedance spectra of a symmetric Ni/YSZ anode cell, manually extracted from Primdahl and Mogensen19. The spectra was measured in
hydrogen with a water content of 3% at T = 1′000◦C at OCV. The arc with the peak frequency of 25Hz was identified as a gas diffusion process and
the arc around 1kHz as a HOR-process.

With this procedure, the expected peak frequency of the uncoupled gas diffusion process is estimated to f0 = 451Hz,
which is in the same order of magnitude as the peak frequency f0 = 2′000Hz from the simulation. This crude estimation
confirms that the uncoupled gas diffusion impedance process is far above the frequency range of the surface reaction
resistance / chemical capacitance process below 1Hz but is shifted to this frequency due to the coupling described in
section 4.3 of the research article.

As an experimental example for the case of coupled processes for gas impedance and HOR, an EIS-spectra for a full
cell with an Ni/CGO anode from Riegraf et al.20 is shown in Fig. 4. The process with the peak frequency of about 0.2Hz
was identified as a mixed HOR and gas impedance process, as described in section 4.3 of the research article. The gas
impedance in this setup with 4x4cm2 active area might be a combination of a gas conversion and a gas diffusion process.
The gas conversion impedance process, which is neglected in the simulation model formulated for smaller button cells,
might even have an intrinsic (uncoupled) peak frequency in the same range near f0 = 1Hz. Gas conversion impedance
processes in the frequency range of 1Hz were e.g. reported by Primdahl and Mogensen19,21. However, as there is no
gas process visible at higher frequencies, we conclude that the gas diffusion process and probably also the gas conversion
process is forced to the frequency range of the surface reaction resistance / chemical capacitance process at about 0.2Hz.
Therewith, this example represents a experimental realization of the coupling of these processes discussed in section 4.3
of the research article.
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~ 0.2Hz

HOR + 
gas impedancemainly cathode

Fig. 4 EIS spectra of a 4x4cm2 full cell with Ni/CGO anode, manually extracted from Riegraf et al.20. The spectra was measured in hydrogen with a
water content of 9% at T = 850◦C at OCV. The process with the peak frequency of 0.2Hz was identified as a mixed HOR and gas impedance process.
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