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I. EXPERIMENTAL AND COMPUTATIONAL DETAILS

Ab-initio calculations of the O(3Π)-N2(
1Σ+

g ) intermolecular interaction energies have been

carried out at the CCSD(T) level of theory by using the Molpro code1 and the computed

values have been corrected for the basis set superposition error by the counterpoise method of

Boys and Bernardi2. The complete basis set (CBS) extrapolation of the obtained interaction

energies has been performed by exploting the two-point correlation energy procedure of

Halkier et al.3,4 in conjuction with Dunning5 augmented correlation-consistent aug-cc-pVQZ

and aug-cc-pV5Z basis sets. For the analytical representation of the 3Π and 3Σ PESs we

have considered that the sum of first two terms in Eq. 1 (VvdW+Vct) is globally accounted

for with the sum of O-N atom-effective atom contributions, each one represented by an ILJ

formula6, while the last term (Vel) is described by a canonical expression of the quadrupole-

quadrupole interaction, due to the non-negligible quadrupole moments of both monomers,

and the related parameters are reported in Table S1. The internal coordinate dependence

of both N2 polarizability and quadrupole moment is taken from Refs.7,8.

Molecular beam scattering experiments have been performed several years ago in the

Perugia laboratory with an apparatus described in detail elsewhere9. In short, high angular

and velocity resolution conditions were adopted in order to measure quantum glory interfer-

ence effects, observable as an oscillatory pattern in the velocity dependence of the integral

cross section Q(v). A microwave discharge source operating at low pressure (few mbar) and

temperature of about 103 K was used to generate the oxygen beam formed by atoms in

their ground 3PJ electronic state with a near statistical population of the spin orbit levels

J=2,1,0. It has been also shown10 that while J=2 and J=0 correlate at intermediate and

short R with states of Π and Σ character, respectively, J=1 provides a combination of both;

this assures that states of the two different symmetries are formed in a 2:1 statistical ratio

during the scattering. The target gas formed by N2 molecules was contained in a scattering

chamber cooled at about 90 K. During the present analysis, which overcomes the previous

one performed by a simple spherically symmetric potential model9, cross sections are cal-

culated from the present anisotropic intermolecular potential in the center of mass system

within the semiclassical JWKB method and convoluted in the laboratory frame for a critical

comparison with the experimental results. Taking into account that the rotational motion of

molecules is cooled at about 90 K and that the proposed interaction is strongly anisotropic,
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the infinite order sudden (IOS) approximation, that considers collisions occurring at fixed

relative orientation of partners, is adopted.

A succinct desccription of the experimental determinations of vibrational deactivation

rate coefficients follows: Eckstrom11 measured vibrational relaxation time (estimated to

have 50% uncertainty in the range 1200-3000 K) by shock-tube experiment, the ground

state oxygen atoms were obtained from the shock-heated thermal dissociation of ozone and

carbon monoxide was used as a tracer of vibrationally exited nitrogen due to fast energy

exchange between these two species. The experimental data by Breshears and Bird12 also

used thermal decomposition of ozone to generate oxygen atoms in shock-tube experiment,

in which a laser-beam deflection technique was used to derive the vibrational relaxation

time (in the range 3000-4500 K) from the postshock density gradient. At lower temper-

atures (300-740 K), McNeal et al.13 used a photo-ionization detector to measure the rate

of vibrationally excited nitrogen in the afterglow. Unfortunately experimental results are

unavailable for temperatures higher than 4500 K. The above original experimental data of

vibrational relaxation time are then used to obtain the deexcitation rate coefficients from

v=1 by means of the Bethe-Teller relation for vibrational energy exchange.

For the quantum-classical calculations14 in this work (see the following), the lowest 9

vibrational states of N2 are used and the initial state is v=1. The rates are computed at

47 initial values of total classical energy comprised between 50 cm−1 and 80000 cm−1, with

a more frequent sampling directed towards lower energies. For each energy value, 5000

trajectories were used, as well as an initial separation distance atom-diatom R equals to 50

Å and an impact parameter randomly chosen between 0 and 9 Å.

The probability of V-E transfer Px is calculated according to the well-known Landau-

Zener procedure15–17:

Px = exp

(
−2πH2

~vR∆

)
. (1)

where vR is the radial velocity at the crossing, ∆ is the difference between the slope of the

two PESs at the crossing point, here calculated to be ∆ =0.7846 eV/Å. Note that only the

collinear configuration is taken into account, as the most effective for inelastic processes.

H is the coupling between the two PESs. In the range of collision energies associated to

the temperature of interest here (below 10000 K), the use of a fixed value of H is sufficient

to calculate reliable cross sections and rate coefficients. The exact determination of the
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value of H is a complicated task. However, physical considerations allow to foresee that H

should be comprised between 1-2 meV, a very small value, which in practice prevents its

computation by ab-initio methods, as it falls within the accuracy of the highest available

levels of theory. The coupling is expected to be small, because it occurs between two

heterogeneous (i.e. corresponding to different Σ and Π symmetries) surfaces, which also

ensures the validity of the Landau-Zener approach. Furthermore, H is the result of two

contributions: the spin-orbit coupling, estimated to be slightly larger than in the O+Ar

case10 where the electrostatic contribution is absent, for which the first order non-adiabatic

correction to adiabatic potential is around 0.2 meV, and the Coriolis coupling, which should

be ≈ 1 meV, the value corresponding to a collision with an impact parameter of 1 Å at a

relative velocity of 1.5 km/s18. A value of H= 1.5 meV was thus considered in the present

calculation.

The radial velocity vR at the crossing in eq. 1 is given by:

v2R =
2

µ

(
E − ~2(l + 1)l

2µR2
c

− Ex
)
, (2)

in which l is the quantum number representing the orbital angular momentum of the collision

complex (from 0 to lmax, which guarantees vR to be real), µ is the reduced mass and E is

the collision energy (from 0 to 10 eV).

The cross section can then be computed from the Px probability as

σ(E) =
π

k2

lmax∑
l=0

(2l + 1) · 2 (1− Px)Px, (3)

in which Px is the probability of the system staying on the same surface, and (1-Px) is that

of changing surface. Moreover, k2 = 2µE
~2 . The rate coefficient for vibro-electronic energy

transfer is obtained by

kV−E(T ) =

√
8kBT

πµ

1

(kBT )2

ˆ ∞
0

σ(E)e−E/kBTEdE. (4)

II. THE IMPROVED LENNARD-JONES MODEL

For the analytical representation of the 3Π and 3Σ PESs, the sum of the first two compo-

nents, (VvdW + Vct), has been formulated as the combination of pair interactions between
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O (3P) and each N atom of the N2 molecule, represented by an Improved Lennard Jones

(ILJ) function.

Specifically, (VvdW + Vct) is described as a sum of atom-“effective atom” contributions

involving interaction pair-potentials between O (3P) and each N atom of the N2 molecule,

i.e.,

VvdW + Vct =
2∑
i=1

VNi−O. (5)

The contributions in the above equation depend on the “effective” electronic polarizability

of the N atom within the N2 molecule, which is different from that of the isolated N atom,

and are described by an Improved Lennard Jones (ILJ) function19, which depends on the

distance R between the two interacting centers according to the expression:

VILJ(R) =ε

[
6

n(R)− 6

(
Rm

R

)n(R)

− n(R)

n(R)− 6

(
Rm

R

)6
]
, (6)

where ε and Rm (the related parameters are reported in Table S1) are the atom-effective

atom interaction well depth and its location, respectively. This function gives a more realistic

representation of both the repulsion and the long range attraction than the classic Lennard-

Jones potential. The n term is expressed as a function of R:

n(R) = β + 4.0

(
R

Rm

)2

, (7)

where β is a parameter which depends on the hardness of the interacting centers, and it is

fixed to 8 in present cases.

Note that the differences in ε and Rm potential parameters associated to the two different

symmetries, obtained following the guidelines reported in ref.10, account for the electronic

anisotropy of the O(3P) atom in determining the bond stabilization by CT exclusively in

the configuration 3Π.

III. THE QUANTUM-CLASSICAL METHOD

The quantum-classical method for atom-diatom collisions was introduced and developed

by G.D. Billing14 and is proven to be accurate and efficient to obtain cross sections and rate

coefficients of heavy-impact processes involving vibrational energy transfer. The key feature
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of this method is that the vibrational degrees of freedom are treated quantum mechani-

cally, whereas the other degrees of freedom (the translational and the rotational motion)

are treated classically. In order to handle with the whole system in a self-consistent way,

the quantum mechanical degrees of freedom must evolve correctly under the influence of

the surrounding classical motions. In turn, the classical degrees of freedom must respond

correctly to quantum transitions.

According to the spirit of the quantum-classical method, vibration and rotational-

vibrational coupling are treated quantum mechanically by close coupled equations. For

atom-diatom collisions, there is just one quantum degree of freedom (the vibration of the

diatom) and the total wavefunction is expanded in terms of the rotationally distorted Morse

wave function φv (r, t) as follows:

Ψ (r, t) =
∑
v

av(t)φv (r, t) exp

(
−itEv

~

)
, (8)

where r is the intramolecular distance of diatom, Ev is the eigenvalue of the rotationally

distorted Morse wave functions φv (r, t) perturbed by rotational-vibrational coupling

φv (r, t) = φ0
v (r) +

∑
v′ 6=v

φ0
v′ (r)

Hv′v

E0
v − E0

v′
, (9)

where Hv′v is the first-order centrifugal stretching term:

Hv′v = −j2m−1r̄−3 < φ0
v′|r − r̄|φ0

v > (10)

with j being the rotational momentum of the molecule and the operator <> is obtained by

integrating over r. φ0
v is the unperturbed eigenfunction of the Morse oscillator and E0

v is the

eigenvalue approximated as

E0
v = ~ωe

(
v +

1

2

)
− ~ωexe

(
v +

1

2

)2

+ ~ωeye
(
v +

1

2

)3

, (11)

where ωe is the oscillator wavenumber and xe and ye are the anharmonicity constants.

In order to obtain the amplitudes av′ for the inelastic processes N2 (v) +O→ N2 (v′) +O,

one then plugs the expansion (eq. 8) into the time-dependent Schrödinger equation and has

to solve the following set of coupled equations for the amplitudes:

i~ȧv′(t) =
∑
v

[〈
φ0
v′

∣∣∣∣V (R, r, γ) + 2i~j
dj

dt

〈φ0
v′ |(r − r̄)|φ0

v〉
mr3eq (E0

v − E0
v′)

∣∣∣∣φ0
v

〉]
· av(t) exp

[
i

~
(Ev′ − Ev) t

]
,

(12)
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in which the intermolecular potential V (R, r, γ) is conveniently expressed as a function of R,

the distance between the atom and the center of mass of the diatom and γ (the angle between

r and R). The translational and rotational motions are obtained by solving the correspond-

ing Hamilton equations by making use of an Ehrenfest averaged potential20 defined as the

quantum expectation value of the interaction potential. This mean-field method usually

provides accurate quantum transition probabilities and properly conserves total (quantum

plus classical) energy. A variable-order variable-step Adams predictor-corrector integrator21

is then used to solve the coupled equations (eq. 12) and the classical equations of motion

for rotation and translation. An absolute integration accuracy of 10−8 is achieved for all

calculations in this work.

The vibrational wavefunction is initialized as a Morse wavefunction. The simultaneous

propagation of the quantum and classical sets of equations produces the quantum transition

amplitudes av′ which can be used to calculate cross sections for the vibrational transitions.

The cross sections are obtained by averaging over a number of trajectories having randomly

selected initial conditions, and a Monte Carlo average over the initial Boltzmann distribution

of rotational energy is introduced to have rate coefficients for vibrational energy transfer.

Thus an averaged cross section is defined as:

σv→v′
(
T0, Ū

)
=

π~4

4µk2BT
2
0 I

ˆ Jmax

0

ˆ jmax

0

ˆ J+j

l=|J−j|
dJdjdl · (2J + 1)Pv→v′ , (13)

where µ is the reduced mass for the relative motion, J the total, j the rotational and l the

initial orbital angular momentum. The moment of inertia is I = mr2 and the temperature

T0 is arbitrary because it cancels out when calculating the rate coefficients. Jmax and jmax

are the upper limit for the randomly chosen total and rotational quantum numbers. Rate

coefficients are then calculated through the following equation

kv→v′(T ) =

(
8kBT

πµ

)1/2(
T0
T

)2 ˆ ∞
0

d

(
Ū

kBT

)
· exp

(
− Ū

kBT

)
σv→v′

(
T0, Ū

)
, (14)

which holds for exothermic processes. Ū , the symmetrized classical energy, is introduced to

restore the detailed balance principle.14,20

Molecular parameters used in the present calculations are reported in Table S2.
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Table S1: Parameters of the analytical formulation of the 3Π and 3Σ PESs for N2 at its

equilibrium distance (re=1.1007 Å). Note that parameters involved in the ILJ functions refer to

atom - effective atom additive components.

3Π 3Σ

O-N interaction (ILJ formulation6)

ε (meV) 7.70 3.10

Rm (Å) 3.32 3.87

β 8 8

quadrupole-quadrupole interaction

QO (a.u) 0.475 -0.950

QN2 (a.u.) -1.115 -1.115

Table S2: Molecular constants for N2.

ωe 2359.60 cm−1

xe 0.006126

ye 0.0000032

req 1.1007 Å

β 2.689 Å−1

De 9.905 eV
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Table S3: Rate coefficients for total vibrational relaxation of N2

(
1Σ+

g

)
(v = 1) upon collision

with O
(
3P
)

as a function of temperature.

T V-T+V-E rates Expt.13

300 1.05E-15 3.32E-15

460 9.95E-15 1.39E-14

640 3.22E-14 2.91E-14

740 4.83E-14 4.43E-14

Figure S1: Rate coefficients for vibrational relaxation of N2(
1Σ+

g )(v = 1) upon collision with

O(3P ) as a function of temperature. V-T rate coefficients computed on Gamallo et al.22 3A
′′

(solid lines) and 3A
′

PESs (dashed lines) by QCT23 (red) and by the present QC (black)

methods.
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Figure S2: Rate coefficients for vibrational relaxation N2(
1Σ+

g )(v = 1) upon collision with

O(3P ) as a function of temperature. Experimental data by Eckstrom11 (red down triangles), by

Breshears et al.12 (green up triangles) and by McNeal13 (brown diamonds) are reported together

with QC V-T rate coefficients computed on the present 3Π (red solid line) and 3Σ (blue solid

line): averaged (2:1) V-T rate coefficients are also reported (black dashed line), together with

V-E (black dash-dot line) and total (V-T+V-E) vibrational relaxation rate coefficients (black

solid line).
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Figure S3: Calculated rate coefficients for vibrational relaxation N2(
1Σ+

g )(v = 1) upon collision

with O(3P ) as a function of temperature in the 1000-2500 K range, left panel, and 3000-4500 K

range, right panel. Experimental data by Eckstrom11 (red down triangles) and by Breshears et

al.12 (green up triangles) are reported.
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Figure S4: Cross sections for vibrational relaxation N2(
1Σ+

g )(v = 1) upon collision with O(3P )

as a function of collision energy. The QC V-T cross sections computed on the present 3Π (red

line with circle symbol) and 3Σ (blue line with square symbol) are reported, together with V-E

cross sections (black solid line).
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Figure S5: Behavior of different potential energy surfaces as a function of the intermolecular

distance R for the perpendicular configuration, corresponding to the C2v symmetry. The present

3Π PES is reported as a solid black line, the Gamallo et al.22 3A
′′

and 3A
′

are the red solid and

dashed lines, respectively, and the Koner et al.24 3A
′′

and 3A
′

are the blue solid and dashed lines,

respectively.
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