Supplementary information

Phonon, plasmon and electronic properties of surfaces and interfaces of periodic W/Si and Si/W multilayers

Niranjan Kumar\(^a\)*, Alexey T. Kozakov\(^b\)*, Aleksey V. Nezhdanov\(^c\), Sergey A. Garakhin\(^a\), Vladimir N. Polkovnikov\(^a\), Nikolay I. Chkhalo\(^a\), Aleksandr I. Mashin\(^c\), Anatolay V. Nikolskii\(^b\), Anton A. Scrjabin\(^b\)

\(^a\)Institute for Physics of Microstructures RAS, Afonino, Nizhny Novgorod 603087, Russia.

\(^b\)Research Institute of Physics, Southern Federal University, 194 Stachki Avenue, Rostov-on-Don 344090, Russia

\(^c\)Laboratory of Functional Nanomaterials, Lobachevsky State University, Nizhny Novgorod 603950, Russia.

*Corresponding authors

Email: kumar@ipmras.ru (NK)

Phone: (831) 417-94-73; 509; Fax: (831) 417-94-64

Email: atkozakov@sfedu.ru (AKT)
Fig. S1. Schematic representation showing top layers of Si and W in (a) W/Si and (b) Si/W multilayer structures, respectively, deposited over the monocrystalline Si (100) substrates; where t_{Si}, t_W and d – are thickness of Si, W and period, respectively.
Fig. S2. Raman scattering of alternate Si layer embedded in the periodic W/Si multilayer structures; (a₁) to (a₁₀) represents thickness of the alternate Si layer: (a₁) 0.5 nm (a₂) 0.8 nm (a₃) 1.4 nm (a₄) 1.75 nm (a₅) 2.3 nm (a₆) 2.4 nm (a₇) 3 nm (a₈) 3.5 nm (a₉) 4.4 nm and (a₁₀) 4.8 nm.
Fig. S3. Thickness dependent phonon scattering of alternate Si layer embedded in the periodic W/Si multilayer structures: (a₁) 0.5 nm (a₂) 0.8 nm (a₃) 1.4 nm (a₄) 1.75 nm (a₅) 2.3 nm (a₆) 2.4 nm (a₇) 3 nm (a₈) 3.5 nm (a₉) 4.4 nm and (a₁₀) 4.8 nm; peaks 6-TO\textsubscript{α-Si} and 7-TO\textsubscript{c-Si}.
Fig. S4. Raman spectra of monocrystalline Si (100) substrate excited by laser wavelength of 473 nm.