Supplementary information

Phonon, plasmon and electronic properties of surfaces and interfaces of periodic W/Si and Si/W multilayers

Niranjan Kumar^a*, Alexey T. Kozakov^b*, Aleksey V. Nezhdanov^c, Sergey A. Garakhin^a, Vladimir N. Polkovnikov^a, Nikolay I. Chkhalo^a, Aleksandr I. Mashin^c, Anatolay V. Nikolskii^b, Anton A. Scrjabin^b

^aInstitute for Physics of Microstructures RAS, Afonino, Nizhny Novgorod 603087, Russia.

^bResearch Institute of Physics, Southern Federal University, 194 Stachki Avenue,

Rostov-on-Don 344090, Russia

cLaboratory of Functional Nanomaterials, Lobachevsky State University,

Nizhny Novgorod 603950, Russia.

*Corresponding authors

Email: <u>kumar@ipmras.ru</u> (NK) Phone: (831) 417-94-73; 509; Fax: (831) 417-94-64 Email: <u>atkozakov@sfedu.ru</u> (AKT)

Fig. S1. Schematic representation showing top layers of Si and W in (a) W/Si and (b) Si/W multilayer structures, respectively, deposited over the monocrystalline Si (100) substrates; where t_{Si} , t_W and d – are thickness of Si, W and period, respectively.

Fig. S2. Raman scattering of alternate Si layer embedded in the periodic W/Si multilayer structures; (a_1) to (a_{10}) represents thickness of the alternate Si layer: (a_1) 0.5 nm (a_2) 0.8 nm (a_3) 1.4 (a_4) 1.75 nm (a_5) 2.3 (a_6) 2.4 nm (a_7) 3 nm (a_8) 3.5 nm (a_9) 4.4 nm and (a_{10}) 4.8 nm.

Fig. S3. Thickness dependent phonon scattering of alternate Si layer embedded in the periodic W/Si multilayer structures: (a₁) 0.5 nm (a₂) 0.8 nm (a₃) 1.4 (a₄) 1.75 nm (a₅) 2.3 (a₆) 2.4 nm (a₇) 3 nm (a₈) 3.5 nm (a₉) 4.4 nm and (a₁₀) 4.8 nm; peaks 6-TO_{*a*-Si} and 7-TO_{*c*-Si}.

Fig. S4. Raman spectra of monocrystalline Si (100) substrate excited by laser wavelength of 473 nm.