Supporting information for

Surface activation by electron scavenger metal nanorod adsorption on TiH₂, TiC, TiN, and Ti₂O₃

Yoyo Hinuma^{1,2*}, Shinya Mine³, Takashi Toyao^{3,4}, Zen Maeno³, and Ken-ichi Shimizu^{3,4}

¹ Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan

² Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda 563-8577, Japan

³ Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan

⁴ Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan

* <u>y.hinuma@aist.go.jp</u>

Compound	Surface	Surface Area	Cell height		Slab thickness		Number of atoms		$E_{ m surf}$		WF	
-			Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick
HfH_2	(101)	9.5	29.5	29.5	16.1	18.8	18	21	101.6	101.7	3.86	3.84
LaH ₃	(110)	21.4	29.2	29.2	15.6	17.5	32	36	55.5	56.6	2.05	2.04
NbH_2	(111)	8.9	28.8	31.4	15.7	18.3	18	21	88.0	86.8	4.35	4.42
ScH_2	(111)	9.7	30.0	30.0	16.4	19.1	18	21	65.3	65.4	3.50	3.56
TiH_2	(101)	8.3	27.7	30.3	15.1	17.7	18	21	99.5	99.6	4.30	4.29
V_2H	(111)	13.5	28.7	28.7	14.4	16.4	21	24	152.2	152.6	4.46	4.45
VH_2	(111)	11.5	29.7	32.7	17.8	20.8	18	21	58.4	60.0	3.02	3.07
YH_3	(001)	33.9	39.0	45.5	22.8	29.3	84	108	42.4	43.1	4.55	4.55
ZrH_2	(101)	9.8	27.3	32.8	16.4	19.1	18	21	97.0	97.3	3.89	3.86

Table S1. Information on thin and thick slab hydride models. Units: area in $Å^2$, cell height and slab thickness in Å, E_{surf} in meV/Å², and WF in eV.

Compound Surface		Area	Cell height		Slab thickness		Number of atoms		E_s	surf	WF	
-			Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick
HfC	(110)	10.6	30.0	30.0	16.1	18.4	14	16	122.2	121.2	4.36	4.29
La_2C_3	(100)	75.7	30.5	30.5	15.2	17.4	70	80	71.7	71.3	2.40	2.34
LaC_2	(110)	18.0	27.5	27.5	13.7	16.5	15	18	39.5	39.4	2.53	2.51
Nb_2C	$(10\overline{1}1)$	17.6	28.5	28.5	14.2	16.6	18	21	157.8	157.4	4.40	4.39
NbC	(100)	10.0	29.1	29.1	15.7	17.9	14	16	100.2	100.1	3.82	3.86
Sc_2C	(0001)	9.4	32.9	32.9	16.5	22.0	9	12	66.0	65.6	3.74	3.74
Ta ₂ C	$(10\overline{1}1)$	17.3	28.2	28.2	14.1	16.5	18	21	175.6	175.4	4.51	4.51
TaC	(100)	9.9	28.9	28.9	15.5	17.8	14	16	112.2	110.7	3.70	3.80
TiC	(100)	9.3	28.0	28.0	15.1	17.2	14	16	116.2	115.5	4.66	4.61
V_2C	(111)	44.3	31.7	34.5	17.3	20.1	72	84	194.4	193.9	3.66	3.66
Y_2C	(0001)	11.0	36.5	36.5	18.2	24.3	9	12	51.5	51.3	3.64	3.65
YC ₂	(110)	15.8	28.2	28.2	15.4	17.9	18	21	44.4	43.2	2.72	2.69
ZrC	(100)	10.9	28.0	28.0	14.0	16.4	12	14	110.3	110.4	4.21	4.17

Table S2. Information on thin and thick slab carbide models. Units: area in Å², cell height and slab thickness in Å, E_{surf} in meV/Å², and WF in eV.

Compound Surface		Area	Cell height		Slab thickness		Number of atoms		E_s	surf	W	WF	
-			Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick	
HfN	(100)	10.1	29.2	29.2	15.7	18.0	14	16	110.2	107.4	2.35	2.36	
LaN	(100)	13.8	28.9	28.9	15.7	18.4	12	14	32.5	34.3	2.88	2.82	
Nb_2N	$(11\overline{2}\overline{2})$	66.6	29.0	29.0	14.5	16.3	72	81	177.0	176.9	3.59	3.59	
Nb_4N_3	(100)	37.9	28.5	28.5	15.4	17.6	49	56	111.0	111.0	3.27	3.27	
NbN	$(11\overline{2}0)$	14.7	28.0	28.0	14.8	16.2	20	22	198.7	198.9	4.20	4.20	
NbN	$(11\overline{2}2)$	21.1	27.8	27.8	15.4	16.5	30	32	196.5	196.5	3.06	3.06	
ScN	(100)	9.9	29.0	29.0	15.6	17.8	14	16	86.3	86.4	3.61	3.62	
Ta ₂ N	$(11\overline{2}\overline{2})$	65.6	28.7	28.7	14.4	16.2	72	81	193.6	193.7	3.76	3.75	
Ti ₂ N	(110)	20.9	31.3	34.7	17.4	20.8	30	36	164.7	164.5	3.61	3.61	
TiN	(100)	8.9	29.5	29.5	14.8	16.9	14	16	96.0	95.4	3.01	3.03	
VN	(100)	8.3	28.6	28.6	14.3	16.3	14	16	62.5	52.2	4.00	4.07	
YN	(100)	11.8	29.1	29.1	14.6	17.0	12	14	70.1	70.0	3.23	3.24	
ZrN	(100)	10.4	29.6	29.6	15.9	18.2	14	16	100.1	97.7	2.37	2.37	

Table S3. Information on thin and thick slab nitride models. Units: area in Å², cell height and slab thickness in Å, E_{surf} in meV/Å², and WF in eV.

Compound	Surface	Area	Cell	height	Sl thicl	ab cness	Num ato	ber of oms	E_{s}	surf	W	/F
Ĩ			Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick
HfO ₂	$(11\overline{1})$	43.2	28.2	31.3	15.7	18.8	60	72	68.9	67.3	6.33	6.35
α -La ₂ O ₃	(111)	220.2	29.3	32.5	16.3	19.5	200	240	40.0	39.3	4.51	4.52
β -La ₂ O ₃	(0001)	13.2	36.2	42.2	24.1	30.2	20	25	41.6	40.1	5.27	5.24
β -La ₂ O ₃	$(10\overline{1}1)$	27.0	32.5	35.4	17.7	20.7	30	35	39.6	38.8	4.68	4.68
Nb_2O_5	(111)	51.3	30.1	33.5	16.7	20.1	70	84	37.6	36.3	7.13	7.11
NbO	(110)	25.2	29.8	32.8	16.9	19.9	34	40	138.8	137.5	3.75	3.73
NbO	(211)	43.6	27.6	31.0	16.1	17.8	56	62	139.3	139.4	3.83	3.84
NbO_2	(110)	20.4	31.6	35.1	17.5	21.0	30	36	53.4	48.8	4.25	4.33
ScO	(100)	9.7	28.6	28.6	15.4	17.6	14	16	58.7	57.6	2.00	1.97
Sc_2O_3	(111)	165.1	31	33.8	16.9	19.7	240	280	60.0	58.7	5.95	5.96
Ta_2O_5	(111)	50.4	29.9	33.2	16.6	19.9	70	84	46.6	44.9	6.92	6.87
Ti ₃ O	$(10\overline{1}0)$	47.7	30.9	35.3	17.6	22.0	64	80	143.3	142.4	3.21	3.21
Ti ₂ O	$(10\overline{1}\overline{1})$	15.8	29.2	29.2	15.7	18.0	21	24	109.1	108.2	3.58	3.57
Ti ₃ O ₂	$(11\overline{2}3)$	48.6	29.3	31.5	15.8	18.0	70	80	108.3	107.5	3.66	3.67
Ti_2O_3	$(01\overline{1}2)$	27.8	33.4	37.1	18.5	22.3	50	60	64.8	62.6	3.26	3.26
Rutile-TiO ₂	(110)	19.2	29.4	32.6	16.3	19.6	30	36	37.9	29.5	7.19	7.25
Anatase- TiO ₂	(101)	19.5	31.8	35.3	17.6	21.2	30	36	31.7	30.1	7.25	7.25
V_2O_5	(001)	41.2	29.4	33.7	16.8	21.0	56	70	0.2	-1.3	8.40	8.33
Y_2O_3	(111)	192.4	27.4	30.4	15.2	18.3	200	240	57.8	56.7	5.27	5.23
ZrO_2	$(11\overline{1})$	44.2	28.5	31.6	15.8	19.0	60	72	59.8	58.2	6.38	6.34

Table S4. Information on thin and thick slab oxide models. Units: area in Å², cell height and slab thickness in Å, E_{surf} in meV/Å², and WF in eV.

Compound Surface Are		Area	Cell height		Slab thickness		Number of atoms		$E_{ m surf}$		WF	
Ĩ			Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick
Hf_2S	(0001)	9.6	58.3	70.0	40.8	52.5	21	27	154.5	154.5	4.38	4.39
HfS_2	(0001)	11.1	35.7	35.7	17.8	23.8	9	12	1.6	1.5	6.00	5.98
HfS ₃	(001)	18.0	54.0	63.0	36.0	45.0	32	40	1.8	1.8	5.62	5.56
LaS	(100)	16.8	29.0	29.0	14.5	17.4	10	12	39.4	40.0	2.28	2.16
Nb_3S_4	$(12\overline{3}0)$	85.0	28.2	31.3	15.7	18.8	70	84	64.3	69.2	5.04	4.92
NbS ₃	$(10\overline{1})$	49.0	54.7	63.8	36.4	45.6	96	120	2.6	2.6	5.01	5.01
ScS	(100)	13.2	28.3	28.3	15.4	18.0	12	14	40	41.7	2.96	2.95
TiS	$(10\overline{1}0)$	20.6	30.6	33.4	16.7	19.5	24	28	81.8	82.2	4.04	4.03
TiS ₂	(0001)	9.7	39.3	45.0	22.5	28.1	12	15	3.6	3.6	5.84	5.84
TiS ₃	(001)	16.5	52.7	61.4	35.1	43.9	32	40	2.2	2.2	5.26	5.26
V_3S	(110)	59.8	39.0	45.5	26.0	32.5	128	160	118.3	118.1	3.46	3.46
V_5S_4	(110)	19.5	37.6	43.8	25.1	31.3	36	45	63.7	63.4	3.67	3.68
VS	(101)	25.7	28.4	32.5	16.2	20.3	32	40	58.4	58.4	4.13	4.13
VS_4	$(11\overline{1})$	73.2	39.9	45.6	22.8	28.5	80	100	2.0	2.0	4.33	4.32
VS_4	(010)	80.4	36.3	41.5	20.8	26.0	80	100	2.1	2.0	4.18	4.16
YS	(100)	14.9	27.3	27.3	13.6	16.4	10	12	39.5	40.1	2.46	2.37
Y_5S_7	$(10\overline{1})$	55.6	33.3	38.1	19.0	23.8	48	60	57.2	57.5	3.85	3.82
ZrS	(001)	12.8	37.9	43.3	21.7	27.1	16	20	25.7	25.8	3.43	3.41
ZrS_2	(0001)	11.4	35.4	35.4	17.7	23.6	9	12	1.9	1.9	6.02	6.02
ZrS ₃	(001)	18.3	54.0	63.0	36.0	45.0	32	40	1.9	1.9	5.61	5.64

Table S5. Information on thin and thick slab sulfide models. Units: area in Å², cell height and slab thickness in Å, E_{surf} in meV/Å², and WF in eV.

Table S6. Comparison of calculated (PBEsol) and experimentally obtained work functions of elementary metals. The unit is eV. The experimental values are from Derry et al., Journal of Vacuum Science & Technology A 33, 060801 (2015). The mean error is -0.12 eV. The experimental value for Ru shown with * is for the (100) surface in Table I of Derry et al. However, this value appears to be for the (001) surface based on individual values cited in Table II of Derry et al.

Metal	Crystal	Surface	Calculation	Experiment	Difference
Al	fcc	(111)	4.06	4.32 ± 0.05	-0.26
Zn	hcp	(0001)	4.31		
Ag	fcc	(111)	4.56	4.53±0.07	0.03
Co	hcp	$(1\overline{1}00)$	4.84		
Fe	bcc	(110)	4.93	5.07 ± 0.04	-0.14
Cu	fcc	(111)	4.94	4.90±0.02	0.04
Re	hcp	(0001)	5.07		
Ru	hcp	(0001)	5.13	5.40±0.11*	-0.27
Ni	fcc	(111)	5.22	5.24 ± 0.07	-0.02
Au	fcc	(111)	5.28	5.33 ± 0.06	-0.05
Rh	fcc	(111)	5.29	5.46 ± 0.09	-0.17
Pd	fcc	(111)	5.38	5.67±0.12	-0.29
Ir	fcc	(111)	5.64	5.78 ± 0.04	-0.14
Pt	fcc	(111)	5.84	5.91 ± 0.08	-0.07

	$E_{\rm Hvac}({\rm eV/defect})$	Ebulk (eV/atom)	WF (eV)
ScH ₂	1.45	-0.75	3.54
YH_2	1.45	-0.79	3.02
LaH ₂	1.39	-0.68	2.66
TiH ₂	1.50	-0.58	4.29
ZrH_2	1.60	-0.67	3.89
HfH_2	1.51	-0.60	3.85
VH_2	1.44	-0.30	4.70
NbH ₂	1.51	-0.33	4.42
TaH ₂	1.32	-0.19	4.25

Table S7. E_{Hvac} , E_{bulk} , and WF for hydrides plotted in Fig. 6.

Table S8. E_{Cvac} , E_{bulk} , and WF for carbides plotted in Fig. 6.

	$E_{\text{Cvac}}(\text{eV/defect})$	Ebulk (eV/atom)	WF (eV)
TiC	0.69	-0.85	4.66
ZrC	0.71	-0.92	4.17
HfC	1.09	-1.03	4.36
VC	-0.43	-0.48	4.36
NbC	-0.24	-0.54	3.82
TaC	0.35	-0.66	3.99

	$E_{\rm Nvac}({\rm eV/defect})$	Ebulk (eV/atom)	WF (eV)
ScN	2.86	-2.13	3.61
YN	2.70	-1.89	3.24
LaN	1.29	-1.41	2.82
TiN	2.83	-1.89	3.01
ZrN	3.49	-1.97	2.37
HfN	3.83	-2.01	2.35
VN	1.15	-1.16	4.00
NbN	1.31	-1.07	3.35
TaN	1.62	-1.08	3.09

Table S9. E_{Nvac} , E_{bulk} , and WF for nitrides plotted in Fig. 6.

Fig. S1. Nanorod of a face-centered cubic metal viewed from three directions.

Fig. S2. Adsorption of a nanorod of a face-centered cubic metal on the Ti_2O_3 (01 $\overline{1}$ 2) surface, as viewed from three directions.