Supporting Information

Constructing the Bonding Interactions between Endohedral Metallofullerene Superatoms by Embedded Atomic Regulation†

Weiyu Xie‡a, Famin Yu‡a, Xiaochen Wu‡, Zhonghua Liu‡, Qiang Yan*‡b and Zhigang Wang*‡a

a. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China. E-mail: wangzg@jlu.edu.cn

b. State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. E-mail: yanq@fudan.edu.cn

†. Electronic Supplementary Information (ESI) available: detailed analyses of bonding properties including orbitals, energy decomposition and charge transfer analysis. See DOI: 10.1039/x0xx00000x

‡. Weiyu Xie and Famin Yu contributed equally to this work.
Part 1. The detailed energy levels and typical molecular orbitals showing the symmetry of units’ superatom orbitals for (Ac@C$_{28}$)(Pa@C$_{28}$), (Th@C$_{28}$)$_2$, (Pa@C$_{28}$)$_2$, (U@C$_{28}$)$_2$-BSc and (U@C$_{28}$)$_2$-BSp.

Part 2. The energy decomposition analysis for Ac-Pa, Th-Th, Pa-Pa, U-U atoms.

Part 3. Stability and electronic properties analysis (Ac@C$_{28}$)(Pa@C$_{28}$), (Th@C$_{28}$)$_2$, (Pa@C$_{28}$)$_2$, (U@C$_{28}$)$_2$-BSc and (U@C$_{28}$)$_2$-BSp.
Part 1. The detailed energy levels and typical molecular orbitals showing the symmetry of units’ superatom orbitals for \((\text{Ac@C}_{28})(\text{Pa@C}_{28})\), \((\text{Th@C}_{28})_2\), \((\text{Pa@C}_{28})_2\), \((\text{U@C}_{28})_2\)-BSc and \((\text{U@C}_{28})_2\)-BSp.~

Fig. S1. The detailed energy levels and typical molecular orbitals showing the symmetry of units’ superatom orbitals for \((\text{Ac@C}_{28})(\text{Pa@C}_{28})\). Black, blue and red fonts and energy levels represent the contribution of the 7s, 6d7p and 5f orbitals of the embedded atoms, respectively. The isosurface is 0.01.
Fig. S2. The detailed energy levels and typical molecular orbitals showing the symmetry of units’ superatom orbitals for (Th@C_{28})_2. Black, blue and red fonts and energy levels represent the contribution of the 7s, 6d7p and 5f orbitals of the embedded atoms, respectively. The isosurface is 0.01.
Fig. S3. The detailed energy levels and typical molecular orbitals showing the symmetry of units' superatom orbitals for (Pa@C_{28})_{2}. Black, blue and red fonts and energy levels represent the contribution of the 7s, 6d7p and 5f orbitals of the embedded atoms, respectively. The isosurface is 0.01.
Fig. S4. The detailed energy levels and typical molecular orbitals showing the symmetry of units’ superatom orbitals for (U@C$_{28}$)$_2$-BSc. Black, blue and red fonts and energy levels represent the contribution of the 7s, 6d7p and 5f orbitals of the embedded atoms, respectively. Only α orbitals were listed because of the similar orbital properties to β orbitals. The isosurface is 0.01.
Fig. S5. The detailed energy levels and typical molecular orbitals showing the symmetry of units’ superatom orbitals for \((\text{U@C}_{28})_2\)-BSp. Black, blue and red fonts and energy levels represent the contribution of the 7s, 6d7p and 5f orbitals of the embedded atoms, respectively. Only \(\alpha\) orbitals were listed because of the similar orbital properties to \(\beta\) orbitals. The isosurface is 0.01.
Part 2. The energy decomposition analysis for Ac-Pa, Th-Th, Pa-Pa, U-U atoms.

Fig. S6. The energy decomposition analysis for Ac-Pa, Th-Th, Pa-Pa, U-U atoms using single
Part 3. Stability and electronic properties analysis (Ac@C\(_{28}\))(Pa@C\(_{28}\)), (Th@C\(_{28}\))\(_2\), (Pa@C\(_{28}\))\(_2\), (U@C\(_{28}\))\(_2\)-BSc and (U@C\(_{28}\))\(_2\)-BSp.

Table S1 Dimerization energy (DE) in eV, dipole moment \(\mu\) in debye (D), and charge transfer for (Ac@C\(_{28}\))(Pa@C\(_{28}\)), (Th@C\(_{28}\))\(_2\), (Pa@C\(_{28}\))\(_2\), (U@C\(_{28}\))\(_2\)-BSc and (U@C\(_{28}\))\(_2\)-BSp.

<table>
<thead>
<tr>
<th>Structure</th>
<th>DE</th>
<th>(\mu)</th>
<th>Monomer 1</th>
<th>Monomer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ac@C({28}))(Pa@C({28}))</td>
<td>1.38</td>
<td>4.25</td>
<td>+0.11 (Ac@C(_{28}))</td>
<td>-0.11 (Pa@C(_{28}))</td>
</tr>
<tr>
<td>(Th@C(_{28}))(_2)</td>
<td>0.18</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(Pa@C(_{28}))(_2)</td>
<td>2.24</td>
<td>0.38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(U@C(_{28}))(_2)-BSc</td>
<td>3.68</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(U@C(_{28}))(_2)-BSp</td>
<td>1.33</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>