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Interaction potentials and models

Silica interaction potential

The interaction between silica atoms is described by the TTAMm model developed by Guis-

sani and Guillot.S1 This model includes a Buckingham potential to reproduce the van der
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Waals interactions and a Lennard-Jones (LJ) 18-6 to avoid the separation of the silica slab

at high temperatures, while the electrostatics are described by a Coulomb potential with a

smoothing function,S2
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where qa,b represents the partial charges of the atomic species a and b, ε0 is the vacuum

permittivity, rij is the inter-atomic distance, σab and εab are the LJ parameters, and αab,

ρab, and Cab are the Buckingham parameters. Table S1 presents an overview of the potential

parameters, where Si and O represent the silicon and oxygen atoms, respectively.

Table S1: Silica interaction parameters.

a-b εab(kJ/mol) σab(Å) αab(kJ/mol) ρab(Å) Cab(kJ/nm6mol)
Si - Si 12776.8 0.4 8.417 x 1010 15.2207 0.0022841
O - O 0.04613 2.2 169551.09 2.8264 0.020719
Si - O 1.0834 1.3 1034699.4 4.7959 0.0068258

To describe the electrostatic interactions in the bulk silica system we employ partial

charges obtained from TTAMm, qSi = 2.4 e and qO = −1.2 e, while the amorphization process

takes place.

Silica-water interactions

In this study, we retain the simple and efficient two-body Born-Huggins-Mayer potential

employed in our previous workS3 to describe silica-water interactions. This potential consists

of Coulomb and Buckingham terms.

U(ij) =
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To reproduce the water contact angle of 19.9o measured by Thamdrup et al.,S4 the

potential is calibrated by tuning the parameter Cab between the silicon and oxygen atoms
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of the water molecules. For these Coulombic interactions, we use a set of partial charges

of qSi = 1.3 e and qO = −0.65 e. Moreover, in each atom within the two outermost atomic

layers of the two silica walls, these partial charges are further modified a value of −0.055 e

to effectively reproduce a surface charge density of −0.9 e/nm2. The potential parameters

are presented in Table S2.

Table S2: Silica-water interaction parameters.

a-b αab(kJ/mol) ρab(Å) Cab(kJ/nm6mol)
Si - OSPCE 1.013 x 1015 0.4 0.025
OSiO2 - H 6830.682 0.3062 0

Ionic interactions

The ionic species in this study are modeled as LJ spheres with a partial charge placed on

the center of the particle. Their respective force fields are obtained from values published

in previous studies.S5–S10 Information about the LJ parameters εab and σab is presented

in Table S3. These ions are considered to be dilute in the aqueous electrolyte solutions

and reproduce an overall ionic concentration of 0.4 M, thus we include 153 ions dilute in

11300 water molecules. In this baseline, the corresponding Debye length is estimated as ca.

0.48 nm.S11 This suggests the nanochannel (4.6 nm height) is in the non-interacting electrical

double layerS12,S13 regime for electrokinetic transport.

Table S3: Ionic interactions parameters.

a-b εab(kJ/mol) σab(Å)
Cl - Cl 0.4184 4.401
Na - Na 0.0617 2.58
Mg - Mg 3.661 1.398
Al - Al 0.9063 1.4472
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Green-Kubo relation for friction coefficient

We obtain the value of the friction coefficient (λ) from the plateau of the integrated auto-

correlation function of the following Green-Kubo expression,S14

λ = lim
t→∞

1

AkBT

∫ t

0

〈F (t)F (0)〉 (3)

where A is the surface area in contact with the solution, T is the temperature, kB is the

Boltzmann constant, and F (t) is the total tangential force acting on the y axis at the solid-

liquid interface. Fig. S1 shows the time evolution of this Green-Kubo expression for cases 1

to 5.
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Figure S1: Time evolution of the GK expression: λ = limt→∞
1

AkBT

∫ t
0
〈F (t)F (0)〉.

Velocity distributions

Poiseuille-like flow

In the main article are shown the velocity profiles for the Poiseuille-like flow for an equivalent

pressure gradient of ca. 5 bar/nm. Here, in Fig. S2 are shown the velocity profiles for an

equivalent pressure gradient of ca. 10 bar/nm. We conduct this second set of simulations to

examine the computed properties for different applied body forces to the electrolyte solution.
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Moreover, we found good agreement between the location of the shear planes and the bulk

viscosities.
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Figure S2: Water velocity (vy) profiles for an equivalent pressure gradient of ca. 10 bar/nm
in the silica nanochannels for cases (a) 1 to 5, (b) 6 to 8.

Couette-like flow

For the Couette-like flow simulations, the atoms of the lower silica wall are given a specific

velocity pointing towards the positive y axis of 20 and 30 m/s, while the atoms in the upper

slab are kept fixed. Figures S3 and S4 show the velocity distributions when the moving wall

is 30 and 20 m/s, respectively.

Shear stress profiles

For the Couette-like flow simulations, we compute the shear stress profiles across the channels

for all the cases, employing equation 4,

〈τ 〉 =
1

V
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a) b)

c) d)

e) f)

g) h)

Figure S3: Flow velocity (vy) across the channel of the Couette-like flow simulations for
imposed wall velocities of 30 m/s. a) case 1, b) case 2, c) case 3, d) case 4, e) case 5, f) case
6, g) case 7, h) case 8. The colored solid dots depict the flow velocity. The dashed colored
lines represent the fits of the velocity profiles within the bulk. The vertical colored lines
depict the positions of the shear planes determined from the corresponding Poiseuille-like
flow simulations. The black dots depict the computed apparent slip velocities, vs = −〈τyz〉/λ.
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a) b)
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Figure S4: Flow velocity (vy) across the channel of the Couette-like flow simulations for
imposed wall velocities of 20 m/s. a) case 1, b) case 2, c) case 3, d) case 4, e) case 5, f) case
6, g) case 7, h) case 8. The colored solid dots depict the flow velocity. The dashed colored
lines represent the fits of the velocity profiles within the bulk. The vertical colored lines
depict the positions of the shear planes determined from the corresponding Poiseuille-like
flow simulations. The black dots depict the computed apparent slip velocities, vs = −〈τyz〉/λ.
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where 〈τ 〉 is the stress tensor averaged over the atoms in a given spatial bin, U is the potential

energy, mi is the mass of atom i, vi is the velocity of atom i, rij is the vector connecting

atom i with atom j, and V is the volume of the bin, n is the number of atoms in the bin and

N is the total number of atoms in the simulation box. Figures S5 and S6 show the shear

stress profiles across the channel for all the cases. The averaged shear stresses across the

channel for all the cases are listed in Table S4.

Table S4: Couette-like flow simulations shear stress (〈τyz〉) for all the cases.

〈τyz〉 (MPa)
Cases Vwall = 30 m/s Vwall = 20 m/s
Case 1 5.09 3.45
Case 2 5.04 3.37
Case 3 5.32 3.41
Case 4 5.40 3.54
Case 5 5.38 3.5
Case 6 5.26 3.53
Case 7 5.44 3.80
Case 8 5.45 3.63

Exclusively SPC/E water molecules simulation

To further explore the system hydrodynamics, we conduct an additional case composed of

a nanochannel that contained exclusively SPC/E water molecules. We perform equilibrium

and non-equilibrium molecular dynamics simulations of Couette-like flow. For the Couette-

like flow simulation, the atoms in the lower silica substrate are given a specific velocity

pointing towards the positive y axis of 30 m/s while the atoms in the upper slab are kept

fixed.

Figure S7 shows the velocity distributions for the Couette-like flow. Note that the system

exhibits a traditional Navier-Stokes no-slip boundary condition. Fig. S8 shows the shear

stress profile for this case. We found a smaller shear stress compare to the cases where the
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a) b)

c) d)

e) f)

g) h)

Figure S5: Shear stress (〈τyz〉) profiles across the channel of the Couette-like flow simulations
for imposed wall velocities of 30 m/s, calculated using eq. 4. a) case 1, b) case 2, c) case 3,
d) case 4, e) case 5, f) case 6, g) case 7, h) case 8. The colored solid dots depict the shear
stress. The horizontal colored lines depict the average shear stresses across the channels.
The vertical black lines depict the solid walls.
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a) b)

c) d)

e) f)

g) h)

Figure S6: Shear stress (〈τyz〉) profiles across the channel of the Couette-like flow simulations
for imposed wall velocities of 20 m/s, calculated using eq. 4. a) case 1, b) case 2, c) case 3,
d) case 4, e) case 5, f) case 6, g) case 7, h) case 8. The colored solid dots depict the shear
stress. The horizontal colored lines depict the average shear stresses across the channels.
The vertical black lines depict the solid walls.

S-10



fluids contain ionic species cf. Figure S5. Furthermore, the time evolution of the Green-Kubo

expression (equation 3) is presented in Fig. S9. Here, we obtain the equilibrium value for the

friction coefficient (λ) from the plateau of the integrated autocorrelation function, which is

in agreement with our previous results.S15 These results exhibit the unrestrained movement

and a homogeneous velocity gradient across the channel at the lack of ionic species in the

fluid.
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Figure S7: Flow velocity (vy) across the channel for the Couette-like flow simulations where
the fluid contained exclusively SPC/E water molecules. The solid dots depict the flow
velocity distributions for an imposed wall velocity of 30 m/s.
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Figure S8: Shear stress (τyz) across the channel for the Couette-like flow simulations where
the fluid contained exclusively SPC/E water molecules, calculated using eq. 4. The solid
dots depict the shear stress for an imposed wall velocity of 30 m/s. The horizontal line
represents the average shear stress across the channel.
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Figure S9: Time evolution of the GK expression: λ = limt→∞
1

AkBT

∫ t
0
〈F (t)F (0)〉, where

the fluid contained exclusively SPC/E water molecules.

Flow of two adjacent immiscible fluids

In this section, we present the analytical representation of Couette and Poiseuille flow of two

adjacent immiscible fluids that are flowing in the y direction in a channel of segment length

L which height is defined along the z axis. The system is treated as in steady-state flow, in

which fluid 1 represents a high-viscosity fluid adjacent to the channel wall, and fluid 2 is the

fluid in the center of the channel (bulk).S16

Couette flow

For Couette flow, we have the following equations,S17

dv1(z)

dz
= C1 (5)

dv2(z)

dz
= C2 (6)

where C1 and C2 are the integration constants that describe the regular Couette flow. These

two equations can be integrated to give,

v1(z) = C1z + C3 (7)
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v2(z) = C2z + C4 (8)

where C3 and C4 are integration constants, and v1(z) and v2(z) are the velocity fields

in the high-viscosity fluid and bulk region, respectively. Here, we employ the boundary

conditions:

1. @z = 0; v1(z) = Vwall

2. @z = hbulk; v2(z) = Vbulk

3. @z = hint; v1(z) = v2(z)

4. @z = hint; η1
dv1(z)

dz
= η2

dv2(z)

dz

where hint is the location of the fluid-fluid interface, hbulk is a point in the middle of the

channel of known velocity Vbulk, and Vwall is the velocity of the moving wall. Moreover, the

integration constants C1, C2, C3 and C4 are,

C1 = − Vwallη2 − Vbulkη2
hint (η2 − η1) + hbulkη1

(9)

C2 = − Vwallη1 − Vbulkη1
hint (η2 − η1) + hbulkη1

(10)

C3 = Vwall (11)

C4 =
Vbulkhint (η2 − η1) + Vwallhbulkη1

hint (η2 − η1) + hbulkη1
(12)

Hence, we obtain Eq. 13 that describes the fluid flow as two linear profiles intersecting

at the fluid-fluid interface.

v(z) =


− (Vwall−Vbulk)η2z−Vwallhintη2+(Vwallhint−Vwallhbulk)η1

hintη2+(hbulk−hint)η1
for z < hint

− (Vwall−Vbulk)η1z−Vbulkhintη2+(Vbulkhint−Vwallhbulk)η1
hintη2+(hbulk−hint)η1

for z ≥ hint

(13)
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Poiseuille flow

For Poiseuille flow, we have the following equation,S16

dτyz
dz

= Fb (14)

where τyz is the shear stress, and Fb is the applied body force fby, divided by the channel

cross-section area Ac, and length L (Fb =
fby
AcL

). We may immediately make use of one of

the boundary conditions, namely, that the shear stress is continuous through the fluid-fluid

interface,

τ 1yz = τ 2yz = Fbz + C1 (15)

where C1 is an integration constant. Moreover, due to Newton’s law of viscosity, we have

the following equations,

−η1
dv1(z)

dz
= Fbz + C1 (16)

−η2
dv2(z)

dz
= Fbz + C1 (17)

where η1 and η2 are the viscosities in the high-viscosity fluid and bulk regions, respectively.

These two equations can be integrated to give,

v1(z) = − Fb
2η1

z2 − C1

η1
z + C2 (18)

v2(z) = − Fb
2η2

z2 − C1

η2
z + C3 (19)

where C2 and C3 are are integration constants. Here, we employ the boundary conditions:

1. @z = 0; v1(z) = 0

2. @z = hint; v1(z) = v2(z)

3. @z = hcent;
dv2(z)

dz
= 0
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where hint is the location of the fluid-fluid interface, and hcent is a point in the middle of the

channel. Moreover, the integration constants C1, C2 and C3 are,

C1 = −Fbhcent (20)

C2 = 0 (21)

C3 =
Fb (h2intη1 − h2intη2) + Fbhcent (2hintη2 − 2hintη1)

2η1η2
(22)

Hence, we obtain equation 23 that describes the fluid flow as two parabolic profiles

intersecting at the fluid-fluid interface.

v(z) =


−Fb(z2−2hcentz)

2η1
for z < hint

−
Fb

[
z2−2hcentz+(h2int−2hinthcent)

η2
η1

+2hinthcent−h2int
]

2η2
for z ≥ hint

(23)

Surface charge screening

To improve our description of the relationship between charge inversion and the presence

of multivalent counter-ions in the electrolyte solution and provide further insight into the

screening mechanism of the wall surface charge, we compute the screening function,S18

Γ(z) = σ0 +

∫ z

0

ρe(z
′)dz′ (24)

where ρe is the local net charge density, and σ0 is the bare surface charge density of the

channel wall. The screening function indicates to what extend the apparent surface charge

density is screened by the ion charges in the electrolyte solution adjacent to the wall, where

Γ(z) = 0 e/nm2 means that the surface charge density is totally screened. In line with previ-

ous studies,S18,S19 we observe that the (negative) σ0 is overscreened, and charge reversalS20

of the apparent surface charge density takes place for cases that contain multivalent cations
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(Figure S10). Consequently, an outer region where the charge density of the co-ions exceeds

the charge density of the counter-ions appears to balance the excess of positive charge at the

surface, i.e., charge inversion occurs in the electrical double layer.
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Figure S10: Screening function (Γ(z)) for cases (a) 1 to 5, (b) 6 to 8, calculated using
Eq. 24. Case 1, depicted as the red line, contains partial ionic concentrations of 0.73 M of
sodium and 0.07 M of chloride dilute in 11300 water molecules. Cases 2 to 5 contain partial
ionic concentrations (sodium, magnesium and chloride) of 0.56, 0.12 and 0.13 M for case 2
(green); 0.15, 0.39 and 0.26 M for case 3 (blue); 0.09, 0.43 and 0.28 M for case 4 (yellow);
0.01, 0.48 and 0.31 M for case 5 (cyan). Cases 6 to 8 contain partial ionic concentrations
(sodium, aluminum and chloride) of 0.45, 0.11 and 0.17 M for case 6 (purple); 0.29, 0.22 and
0.28 M for case 7 (orange); 0.16, 0.28 and 0.35 M for case 8 (brown).

Additional cases with higher concentrations

To provide further insight into the relation between the interfacial dynamics in the channel

and the number of valence of the ions, we conduct additional MD simulations for two new

cases. In these cases, taking the case 3 (Table 1 in the main manuscript) as a reference, the

total ionic concentration of the electrolyte solution is increased while the ratio of the number

of monovalent counter-ions to the number of divalent counter-ions and the surface charge

density are maintained constant. The partial concentrations of the ionic species present for

the new cases and the corresponding reference case are listed in Table S5.

Figure S11 shows the charge profile for the cases listed in Table S5 near the charged silica
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Table S5: Simulated ionic concentrations (M) per species, for the additional cases and their
reference case (case 3).

Na+ (M) Mg+2 (M) Cl− (M) total (M)
Case 3 0.15 0.39 0.26 0.40
Case 3a 0.19 0.49 0.51 0.60
Case 3b 0.24 0.60 0.77 0.80

surface. As observed in this figure, the charge inversion magnitude increases with higher ionic

concentrations, which is in accordance with results reported in previous studies.S21
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Figure S11: Net charge density (ρe) near the silica surface for the cases listed in Table S5.
The blue, violet and pink solid dots depict cases 3, 3a and 3b respectively.

Figure S12 shows the flow velocity profiles near the moving wall of the channel (Couette-

like flow) for the cases listed in Table S5. Notice that the constant velocity imposed to the

wall is 30 m/s. From this figure, for the three cases, we find that the intersection plane (i.e.,

the shear plane) between the two adjacent fluid regions with different flow velocity gradients

is located at the same distance from the wall, ca. 0.53 nm. Although, the total electrolyte

concentration and the charge inversion magnitude are different for the three cases cf. Figure

S11, the location of the shear plane does not change for the three cases. Therefore, it can be

inferred that there is a correlation between the altered interfacial fluid dynamics observed in

the present study (see Figures 4 and 6 in the main manuscript and Figures S3 and S4) and

the ratio of the number of monovalent to the multivalent counter-ions in the nanoconfined
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electrolyte solution.
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Figure S12: Flow velocity (vy) near the moving wall for the cases of Couette-like flow listed
in Table S5 for an imposed wall velocity of 30 m/s. The blue, violet and pink solid dots
depict the flow velocity profiles for cases 3, 3a, and 3b respectively. The dashed colored lines
represent the fits to the velocity profiles within the bulk region.
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