
SUPPLEMENTARY INFORMATION OF 

“Universal description of steric hindrance in flexible 
polymer gels”

1. FIGURE ILLUSTRATING THE BEAD-SPRING MODEL

Figure SI-1. Snapshot of the simulation cell corresponding to a gel of 25 monomeric 
units per chain and a solute particle whose radius is 1 nm. Blue, green and magenta beads 
represent monomeric units, crosslinkers and solute particle, respectively. The simulation 
cell contains 8 crosslinkers.
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2. EXAMPLE OF FIT PERFOMED TO OBTAIN DIFFUSION COEFFICIENTS.

Figure SI-2 shows an example of the fit performed to compute the diffusion coefficient 

of a solute particle with  nm diffusing in a hydrogel with ,  𝑅𝑠 = 2.22  𝜑 = 0.05 𝑁𝑚𝑢 = 40

and  N/m at 298 K.  is plotted as a function of time and fitted to the 𝑘𝑒 = 0.4 〈∆𝑟2〉/6𝑡

exponential decay , where ,  and  are adjustable parameters.  is the long-𝐷 + 𝐴𝑒 ‒ 𝑡/𝜏 𝐷 𝐴 𝜏 𝐷

time diffusion coefficient.
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Figure SI-2.  as a function of time for a solute particle with  nm 〈∆𝑟2〉/6𝑡 𝑅𝑠 = 2.22

diffusing in a hydrogel with ,  and  N/m at 298 K. The black 𝜑 = 0.05 𝑁𝑚𝑢 = 40 𝑘𝑒 = 0.4
line represents the data obtained from simulation whereas the red line is the fit to an 
exponential decay. The arrow points to the value of the long-time diffusion coefficient on 
the y-axis.



It should be pointed out that  is close to  at very short times because the 〈∆𝑟2〉/6𝑡 𝐷0

probability of finding polymer chains just at the beginning of a random walk is very small 

(particularly in the case of very low polymer volume fractions). In other words, a 

moderate-sized solute particle does not “see” the polymeric chains and its diffusive 

motion is apparently free. Only after some time, the Brownian motion of the solute is 

altered by the polymeric network and a stationary regime is reached. 

3. ANOMALOUS DIFFUSION.

Figure SI-3 displays  against  in log-log plot for the system of Figure SI-2. Three 〈∆𝑟2〉 𝑡

different regimes can be observed in this plot: two Brownian motions at short and long 

times (  is proportional to  in both cases) and an intermediate region between them.〈∆𝑟2〉 𝑡
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Figure SI-3.  as a function of time for a solute particle with  nm diffusing 〈∆𝑟2〉 𝑅𝑠 = 2.22

in a hydrogel with ,  and  N/m at 298 K. Red and blue dashed 𝜑 = 0.05 𝑁𝑚𝑢 = 40 𝑘𝑒 = 0.4

lines represent regions in which  is proportional to  or , respectively.〈∆𝑟2〉 𝑡 𝑡𝑛

If  is proportional to  (usually with ) in this region, we say that this transient 〈∆𝑟2〉 𝑡𝑛 𝑛 < 1

regime exhibits anomalous diffusion.1–4 The exponent that characterizes this diffusive 

behavior ( ) can be estimated by fitting the mean squared displacement (MSD) to an 𝑛

allometric function. In this study, however, we have followed the method proposed by 

Netz et al. for the estimation of :1 plotting  against . In this graph, 𝑛
𝑙𝑜𝑔(

〈∆𝑟2〉
𝑡

)
𝑙𝑜𝑔(𝑡)

the slope of the intermediate regime provides the value of . In any case, it should be 𝑛 ‒ 1

stressed that the limits of this diffusive regime in time are not perfectly defined, which 

constitutes a source of uncertainty in .𝑛
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Figure SI-4. Exponent of anomalous diffusion ( ) as a function of  for 𝑛 𝛽 = 𝜑(1 + 𝑅𝑠/𝑅𝑚)1.3

the five series of simulations carried out in this work.

Figure SI-4 shows the -values obtained for the five series of simulations as a function 𝑛

of . The error bars of Series 5 were computed from the fits performed by two of the 𝛽

authors. In this way, we exemplify the uncertainty caused by the subjective appreciation 

of the limits of the regime of anomalous diffusion. In some cases, this uncertainty can 

even be of the order of 0.08 and, consequently, care must be taken when drawing 

conclusions. In spite of this, the points of the five series appear to be distributed around a 

decreasing trend line when they plotted as a function of , with the exception of the -𝛽 𝑛

value corresponding to the highest polymer volume fraction of  Series 5. This suggests 

that: i)  can also be a useful parameter in the description of anomalous diffusion of 𝛽

flexible polymer gels; ii) the exponent of anomalous diffusion decrease with the solute 

size and the polymer volume fraction.

4. RELATIVE DIFFUSIVITIES OF REAL SYSTEMS AS A FUNCTION OF 
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Figure SI-5. Relative diffusivity corresponding to real gel/solute systems as a function 

of . 𝛼 = 𝜑(1 + 𝑅𝑠/𝑅𝑚)2

Figure SI-5 displays relative diffusivities of different real gel/solute systems as a function 

of parameter . As can be easily inferred, these data do not collapse onto a master curve.𝛼
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