Supporting Information

Fluorescence Band Exchange Narrowing in a Series of Squaraine Oligomers: Energetic vs. Structural Disorder

Arthur Turkin,^a Pavel Malý,^b Christoph Lambert,^{a,c*}

^aInstitut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.

^bInstitut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.

^cCenter for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, D-97074 Würzburg, Germany

Table of Contents

1	Materials and Methods	1
2	Fluorescence Spectroscopy	3
3	Calculations	12
4	References	13

1 Materials and Methods

Steady-State Absorption Spectroscopy

- Jasco V670 UV/vis/NIR spectrophotometer (software: SpectraManager v.2.08.04)
- Agilent Technologies Cary 5000 UV/vis/NIR spectrophotometer (software: Agilent Cary WinUV Analysis and Bio v.4.2)

Spectroscopic grade solvents were used as received (Acros Organics, Supelco, VWR). Absorption measurements were carried out in silylated quartz cuvettes from Starna (10 mm, Pfungstadt, Germany) at r.t. Silylation procedure was carried out according to literature. Aggregation of oligomers could be excluded by measuring a series of samples with different concentrations ($10^{-7} - 10^{-5}$). Transition dipole moments were calculated with Eq. S1:

$$\mu_{eg}^{2} = \frac{3h\varepsilon\varepsilon_{0}\ln(10)9n}{2000\pi^{2}N_{Av}(n^{2}+2)^{2}} \int \frac{\varepsilon}{\tilde{v}} d\tilde{v}$$
 S1

where *h* is the Planck constant, *c* is the speed of light $(3 \times 10^{10} \text{ cm s}^{-1})$, ε_0 is the electric field constant, *n* is the refractive index of the solvent, N_{Av} is the Avogadro constant and $\varepsilon(\tilde{v})$ is the extinction coefficient as a function of the wavenumber \tilde{v} .

Steady-State Emission Spectroscopy

Edinburgh Instruments FLS980 fluorescence lifetime spectrometer

- Software F980 v.1.4.5
- 450 W continuous xenon arc lamp
- Double excitation and emission monochromator
- PMT (R5509-42)

Steady-state emission spectra were recorded at r.t. in silylated 10 mm quartz cells from Starna (Pfungstadt, Germany). All solvents were of spectroscopic grade and were used as received. Emission and excitation scans were performed on strongly diluted samples (OD < 0.05) in order to prevent self-absorption. Emission spectra were corrected ($I_{fl} \times \lambda^2$) before normalizing. Fluorescence quantum yields were determined using optical dense samples in an integrating sphere and Eq. S2:

$$\Phi_{obs} = \frac{\int F_{sample}}{\int E_{solvent} - \int E_{sample}}$$
S2

where Φ_{obs} is the observed quantum yield, F_{sample} is the fluorescence emission spectrum of the sample, E_{sample} is the spectrum of the light used to excite the sample and $E_{solvent}$ is the spectrum of the light used for excitation with a blank sample. The observed fluorescence quantum yields were corrected for self-absorption by means of the method of Bardeen at al., using Eq. S3:

$$1 - a = \frac{\int_{0}^{\infty} F_{fl}(\lambda) d\lambda}{\int_{0}^{\infty} F_{emission}(\lambda) d\lambda}$$
S3

Where *a* is the probability of self-absorption of an emitted photon, thus 1 - a is the escape probability, and the fluorescence spectrum of a diluted sample F_{fl} (*OD* < 0.05) is compared to an

optical dense sample F_{emission} . Using Eq. S3 the quantum yield Φ_{fl} of the sample can be determined:

$$\Phi_{fl} = \frac{\Phi_{obs}}{1 - a + a\Phi_{obs}}$$
S4

Excitation spectra were recorded with the same setup.

Time Dependent Fluorescence-Emission

Edinburgh Instruments FLS980 fluorescence lifetime spectrometer

- Pulsed laser diode (PLD): 15250 nm⁻¹ (656 nm)
- PMT (H10720-01)
- Software: FAST v.3.4.2

Fluorescence lifetimes were determined by time-correlated single photon counting (TCSPC). The samples were prepared similar to the steady-state emission experiments (OD < 0.04) and measured under magic angle conditions. The instrument response function (IRF) was determined using a scatterer solution consisting of colloidal silica (LUDOX) in deionised water. Lifetimes were determined by deconvolution of the experimental decay with the IRF. The decay was fitted with exponential decay functions.

2 Fluorescence Spectroscopy

		ṽ _{abs} / cm⁻¹ (nm)	μ _{eg} / D²	ṽ _{em} / cm⁻¹ (nm)	Stokes shift / cm⁻¹	Φ _{fl} / _	τ _{fl} ^d / ns
<u> </u>	CHCl ₃	14600 (685)	103	14200 (702) ^a	300	0.55	2.52
20	acetone	14700 (681)	115	14300 (698) ^b	400	0.20	0.94
50	CHCl ₃	13600 (735)	233	13300 (751) ^c	300	0.27	1.01
5Q2	acetone	13700 (732)	260	_	_	-	_
SQ₃	CHCl ₃	13100 (761)	363	12900 (776) ^c	300	0.27	1.07 (0.87) 1.58 (0.13) ^e
	acetone	13200 (759)	336	-	-	_	_
80	CHCl ₃	12900 (773)	480	12700 (785)	200	0.29	1.07
304	acetone	13000 (771)	536	_	_	_	_
80	CHCl ₃	12800 (780)	636	12600 (791)	200	0.30	1.11
345	acetone	15000 (666)	680	_	_	_	_
80	CHCl₃	12800 (784)	738	12600 (794) ^c	200	0.32	1.13
346	acetone	15300 (656)	757	_	-	-	_
80	CHCl₃	12700 (785)	912	12600 (794) ^c	200	0.30	1.05
307	acetone	15400 (648)	906	_	-	-	_
60	CHCl₃	12700 (785)	1037	12500 (798) ^c	200	0.33	1.08
5Q8	acetone	15500 (644)	995	_	-	-	_
60	CHCl₃	12700 (785)	1158	12500 (798) ^c	200	0.39	1.17
5Q9	acetone	15500 (644)	1123		-	_	_

Table S1Summary of spectroscopic data of the squaraine oligomer series.

Excitation at a15400 cm⁻¹ (650 nm), b15900 cm⁻¹ (630 nm) and c15200 cm⁻¹ (660 nm). Multiexponential decay

measured by TCSPC, excitation at 15200 cm⁻¹ (656 nm), amplitudes are given in brackets. ^eAmplitude average lifetime: 1.14 ns.

c) λ/ nm 1000 800 600 1.2-SQ₂ in CHCl₃ abs fl fl @ 12500 cm 1.0 0.8 //a. u. 0.6 0.4 0.2 0.0 14000 *ṽ*/ cm⁻¹ 16000 12000 18000

f)

e)

b)

d)

Fig. S1 Normalised absorption (grey shaded), emission (red solid line) and excitation (blue solid line) spectra of the oligomers in (a) acetone and (b-j) $CHCl_3$. Even though a low concentration was used for emission experiments (OD < 0.04) deviations in the excitation spectra at lower energy are clearly visible. This issue is due to an inner filter effect, see Fig. S2.

Fig. S2 Emission (red) and excitation spectra at various concentrations of SQ_9 in CHCl₃. The spectra were measured at two emission wavelengths, 12300 and 11100 cm⁻¹, respectively, and were normalised at 16000 cm⁻¹.

Fig. S3 Comparison of radiative rate constant k_{fl} , non-radiative rate constant k_{nr} and quantum yield Φ_{fl} in CHCl₃.

	<i>k</i> _{fl} ^a / × 10 ⁸ s ^{−1}	<i>k</i> _{nr} ^b / × 10 ⁸ s ^{−1}	Φ _{fl} / –				
SQ	2.18	1.78	0.55				
SQ ₂	2.67	7.23	0.27				
SQ ₃	2.37	6.40	0.27				
SQ₄	2.71	6.64	0.29				
SQ₅	2.70	6.31	0.30				
SQ ₆	2.83	6.02	0.32				
SQ ₇	2.86	6.67	0.30				
SQ ₈	3.06	6.20	0.33				
SQ9	3.33	5.21	0.39				
	Φ_{cl}						

Summary of rate constants and quantum yields. Table S2

$$\Phi_f$$

 ${}^{a}k_{fl}$ is the radiative rate constante $k_{fl} = \frac{\Phi_{fl}}{\tau_{fl}}$ and ${}^{b}k_{nr}$ is the non-radiative rate constante $k_{nr} = \frac{1}{\tau_{fl}} - k_{fl}$

Comparison of Transition Dipole Moments

Fluorescence transition dipole moments (μ_{fl}) calculated via the Strickler-Berg equation (S4):

$$k_{fl} = \frac{16 \times 10^6 \pi^3 n (n^2 + 2)^2}{3h\varepsilon_0} \langle \tilde{v}_{fl}^{-3} \rangle \mu_{fl}^2$$
 S4

where *h* is the Planck constant, ε_0 is the vacuum permittivity, *n* is the refractive index ($n_{CHCI3} = 1.4459$, $n_{toluene} = 1.4969$), and the averaged cubic fluorescence energy:

$$\left\langle \tilde{v}_{fl}^{-3} \right\rangle_{av}^{-1} = \frac{\int I_{fl} d\tilde{v}}{\int \tilde{v}^{-3} I_{fl} d\tilde{v}}$$
 S5

with $I_{\rm fl} = I_{\lambda} \times \lambda^2$

	μ_{eg}^2 / D²	μ_{fl}^2 / D²	$\mu_{\mathcal{S}1^{a}}^2$ / D²
SQ	103	98.0	114
SQ ₂	233	146	178
SQ ₃	363	143	200
SQ₄	480	168	214
SQ₅	636	168	267
SQ ₆	738	180	298
SQ7	912	183	366
SQ ₈	1037	196	399
SQ ₉	1158	214	454

 Table S3
 Collection of absorption and fluorescence transition dipole moment data.

^aFrom Fig. S4.

 μ_{S1}^2 was determined by fitting the mirror image of the fluorescence spectra plotted as l/\tilde{v}^3 to the low energy side of the absorption spectra (plotted as l/\tilde{v}). This yields a rough estimation for the band shape and intensity of the lowest energy exciton absorption band S₁ and allows to calculate the transition dipole moment μ_{S1}^2 by integration using Eq. S1.

b)

Fig. S4 Absorption spectra (dashed red line, l/\tilde{v}).) in CHCl₃ plotted next to the mirrored fluorescence spectra ("MCubEn", solid black line, l/\tilde{v}^3).

	$N_{coh} = S_{HR} \frac{I_{00}}{I_{01}}$		$N_{coh} = \left(\frac{f}{f}\right)$	$\left(\frac{fwhm_{SQ}}{whm_{SQ}}\right)^2$	$N_{coh} = \frac{\mu_{fl}^2(SQ_n)}{\mu_{fl}^2(SQ)}$	$\frac{\text{Direct}}{N_{coh}}$
	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.
SQ	1.00	1.00	1.00	1.00	1.00	1.00
SQ ₂	1.39	1.72	1.41	1.54	1.49	1.79
SQ₃	1.45	2.20	1.45	1.93	1.46	2.04
SQ₄	2.06	2.55	1.85	2.16	1.71	2.41
SQ₅	2.11	2.77	2.07	2.34	1.71	2.60
SQ ₆	2.37	2.84	2.29	2.39	1.84	2.80
SQ7	2.22	2.95	2.34	2.55	1.87	2.94
SQ ₈	2.23	2.91	2.53	2.49	2.00	3.06
SQ9	2.29	2.91	2.43	2.55	2.18	3.16

Table S4Determined coherence length of both experimental and calculated data.

3 Calculations

Quantity	Value	Quantity	Value
Transition energy	$e_B = 14670 \ cm^{-1}$	Helix pitch	2 nm
Reorganisation energy	$\lambda_c = 240 \ cm^{-1}$	Energetic disorder (st. deviation)	$\sigma = 260 \ cm^{-1}$
Bath parameters (Eq. 4 of the main text)	$\Lambda = 600 \ cm^{-1}, \\ \Omega = 1200 \ cm^{-1}, \\ S_{HR} = 0.22, \\ \gamma = 30 \ cm^{-1}$	Linear orientation disorder (st. deviation)	$\sigma = 50^{\circ}$
Averaging	100000x	Helical rise angle disorder (st. deviation)	$\sigma = 15^{\circ}$
Linear chain angle	$\theta_{lin} = 0^{\circ}$	Helical azimutal angle disorder (st. deviation)	$\sigma = 0^{\circ}$
SQ arc angle	$\theta_{arc} = 140^{\circ}$	SQ length	1.5 nm

Table S5Values used for the excitonic model.

Fig. S5 Squaraine coil and helix geometry used for the calculations.

Fig. S6 Extent of diagonal and off-diagonal disorder. (a) Distribution of energetic deviations from the mean value, relative to the homogeneous linewidth (347 cm⁻¹). Black: full energetic disorder, green: reduced to 10% (i.e., remaining disorder is mostly structural). (b) Distribution of nearest-neighbour coupling in the linear geometry, relative to the mean value (-515 cm⁻¹). Black: full structural disorder, blue: reduced to 10% (i.e., remaining disorder is mostly energetic).

4 References

- 1. G. A. Olah, S. C. Narang, B. G. B. Gupta and R. Malhotra, *J. Org. Chem.* 1979, 44, 1247.
- 2. T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz and C. J. Bardeen, *Rev. Sci. Instrum.* 2007, **78**, 086105.
- 3. S. Kumar Panigrahi and A. Kumar Mishra, *JPPC* 2019, **41**, 100318.