Electronic Supplementary Information for

A combined spectroscopic and computational investigation on dispersion-controlled docking of Ar atoms on 2-(2'-pyridyl) benzimidazole

Saurabh Khodia and Surajit Maity*

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India, 502285

SI Table T1: The experimental band positions (v_{expt}) and vibrational frequencies in the ground (v''_{Expt}) and excited (v'_{Expt}) states of the PBI-Ar cluster are listed along with the possible assignments. The calculated ground (v'') and excited (v') state frequencies are scaled using 0.983 and 0.9345 factors, respectively.

R2	PI spectr	um of PBI-A	r	SVLF spectrum of PBI-Ar					
v_{Expt}	V'Expt	Band	V'Calc	v_{Expt}	v''_{Expt}	Band	V"Calc		
(cm)		01				01			
31571	0	00	0	31571	0	0	0		
31580	9	<i>X</i> ¹ ₀	11	31677	105	45 ⁰ ₁	106		
31595	24	<i>Y</i> ¹ ₀	31	31783	212	45 ⁰ ₂	212		
31612	40	Z_0^1	44	31864	292	44^{0}_{1}	299		
31651	80	65 ¹ ₀	86	31889	317	45 ⁰ ₃	318		
31663	92	45 ¹ ₀	91	31976	404	$45_1^0 44_1^0$	404		
31672	101	$45_0^1 X_0^1$	103	31994	423	45^{0}_{4}	423		
31681	110	$45_0^1 Y_0^1$	123	32074	503	42 ⁰ ₁	546		
31704	132	$45_0^1 Z_0^1$	135	32189	618	39^{0}_{1}	644		
31755	183	45_0^2	183	32298	726	38^{0}_{1}	726		
31764	193	$45_0^2 X_0^1$	194						
31779	207	$45_0^2 Y_0^1$	214						
31795	224	$45_0^2 Z_0^1$	227						
31847	275	45^{3}_{0}	274						
31879	307	43 ¹ ₀	315						
31887	316	$45_0^3 Z_0^1$	318						
31903	331								
31939	367	45^{4}_{0}	365						
31992	420								
32001	429								
32011	440								
32031	460	45^{5}_{0}	457						

	32040	469	42^{1}_{0}	466				
--	-------	-----	--------------	-----	--	--	--	--

SI Table T2: Calculated binding energies with (D_0) and without (D_e) zero-point vibrational energy correction in the ground (S_0) are given in kJ/mol. Structures optimized at MP2 level of theory using aug-cc-pVDZ basis set. The counterpoise (CP) corrections were applied on the optimized geometry.

Structures	0% CP (corrected	100% CP corrected			
	D _e (S ₀)	D ₀ (S ₀)	D _e (S ₀)	D ₀ (S ₀)		
PBI-Ar-1	13.7	-	7.2	-		
PBI-Ar-2	10.9	-	5.9	-		
PBI-Ar ₂ -1	27.7	26	14.4	12.7		
PBI-Ar ₂ -2	25.6	23.9	13.6	11.9		

Note: The MP2 level optimized geometry of PBI-Ar₂ isomers 1 & 2 were used to calculate single point CCSD(T) energies. The isomers were found to be separated by 2 kJ/mol, with isomer 1 being more stable.

SI Table T3: Low frequency intermolecular vibrational frequencies in cm⁻¹ v_X , v_Y and v_Z of PBI-Ar_n isomers in the S₁ state are listed. The frequencies are scaled with 0.9345 to compare with the experimental data.

Mode	2PBI-Ar_1	2PBI-Ar_2			Expt
v _X	11	10			9
$\nu_{\rm Y}$	31	32			24
ν_Z	44	49			40
Mode	2PBI-Ar2_1	2PBI-Ar2_2	2PBI-Ar2_3	2PBI-Ar2_4	
ν _X	10	15	11	11	
$\nu_{\rm Y}$	16	35	14	17	18
ν _Z	46	51	48	52	44
Mode	2PBI-Ar3_1	2PBI-Ar3_2	2PBI-Ar3_3		
ν _X	12	8	1		
$\nu_{\rm Y}$	15	17	29		
ν _Z	51	53	52		46

SI Figure S1: Vibrational modes of the first four lowest energy totally symmetric (a') vibrational modes of PBI molecules. The arrows indicate the bending (v_{45}), twisting (v_{43} , v_{42}) and stretching (v_{44}) motions with respect to the C-C linkage between the pyridyl and imidazolyl groups. Identical motions are present in the PBI-Ar_n complexes in both the ground and excited states.

SI Figure S2. The difference spectra (HB) of PBI-Ar_n complexes were recorded by subtracting the R2PI spectra recorded with and without the hole-burning laser. The dotted arrows indicate the wavenumbers of the hole-burning laser positions. The * indicates contributions from low energy isomers in the PBI-Ar_{2/3} systems.

SI Figure S3: Comparison of the FC simulation spectrum with the experimental spectrum recorded for PBI-Ar system.

SI Figure S4: Comparison of the FC simulation spectrum with the experimental spectrum recorded for PBI-Ar2 system.

SI Figure S5: Comparison of the FC simulation spectrum with the experimental spectrum recorded for PBI-Ar₃ system.

	PBI-	$N(S_0)$		PBI-N(S ₁)					
Atom	X	Y	Z	Atom	X	Y	Z		
С	-2.439	1.35	0.0	С	-2.4628	1.3677	0.0		
Н	5.1467	0.9999	0.0	Н	5.1934	0.9593	0.0		
N	-2.3481	-1.0529	0.0	N	-2.319	-1.0833	0.0		
Н	5.0286	-1.4539	0.0	Н	5.017	-1.4931	0.0		
Н	-5.5394	-0.0031	0.0	Н	-5.5298	-0.074	0.0		
С	-3.8227	1.3084	0.0	С	-3.8402	1.3061	0.0		
С	1.7469	-0.768	0.0	C	1.7316	-0.7539	0.0		
Н	2.8503	-2.6329	0.0	Н	2.7907	-2.6224	0.0		
N	0.4047	-1.0682	0.0	N	0.3712	-1.0237	0.0		
С	3.0314	1.2997	0.0	С	3.0718	1.2964	0.0		
С	4.1101	-0.8826	0.0	С	4.1224	-0.8872	0.0		
N	0.516	1.1656	0.0	N	0.572	1.2216	0.0		
С	-1.7397	0.1418	0.0	С	-1.7267	0.1701	0.0		
С	-4.4612	0.0729	0.0	C	-4.4548	0.033	0.0		
С	2.8959	-1.5523	0.0	С	2.8469	-1.5426	0.0		
С	-0.28	0.1203	0.0	С	-0.3004	0.1559	0.0		
Н	-0.0485	-1.9662	0.0	Н	-0.13	-1.9008	0.0		
Н	-4.1406	-2.0559	0.0	Н	-4.101	-2.0871	0.0		
C	1.7965	0.6483	0.0	C	1.8001	0.672	0.0		
Н	-4.3973	2.225	0.0	Н	-4.4328	2.2099	0.0		
Н	-1.8875	2.2783	0.0	Н	-1.9338	2.3106	0.0		
С	4.1767	0.5215	0.0	С	4.2183	0.4934	0.0		
Н	3.0788	2.3797	0.0	Н	3.137	2.3753	0.0		
С	-3.6784	-1.0755	0.0	С	-3.641	-1.1032	0.0		

SI Table T4: Coordinates of the optimized structures of PBI and its complexes with Ar atoms, calculated using B3LYP-D3(BJ)/def2-TZVPP.

Table T4: Continues

	PBI-	Ar-a		PBI-Ar-b					PBI-	Ar ₂ -a	
Atom	X	Y	Z	Atom	X	Y	Z	Atom	Х	Y	Ζ
Н	-5.4243	0.1208	0.4306	Н	-5.4467	0.1281	0.3524	Н	-5.4115	0.1235	0.383
С	-3.5932	-0.9922	0.2849	С	-3.6142	-0.9858	0.2368	С	-3.5775	-0.9883	0.2683
С	-1.638	0.1817	0.0874	С	-1.6561	0.187	0.0679	С	-1.6194	0.1873	0.1152
Н	0.0053	-1.9613	0.0037	Н	-0.013	-1.9573	0.0147	Н	0.0244	-1.9547	0.029
Н	3.2115	2.3154	-0.2966	Н	3.1976	2.3166	-0.2909	Н	3.23	2.3234	-0.2531
Н	5.0808	-1.558	-0.3255	Н	5.0638	-1.5583	-0.3189	Н	5.0974	-1.5503	-0.3315
С	3.1425	1.2368	-0.2724	С	3.128	1.2382	-0.2605	С	3.1611	1.2447	-0.2336
С	4.1755	-0.9675	-0.2864	С	4.1592	-0.9669	-0.2745	С	4.1929	-0.9598	-0.2761
С	-0.1846	0.1285	-0.0334	С	-0.2005	0.133	-0.0241	С	-0.1648	0.1353	0.0136
С	1.8191	-0.8027	-0.1532	С	1.8037	-0.7999	-0.1273	С	1.8386	-0.7952	-0.1137
N	0.4743	-1.0739	-0.0594	Ν	0.4581	-1.0701	-0.0361	Ν	0.4944	-1.0667	-0.0165
С	-2.3098	1.4049	0.1244	С	-2.3279	1.4102	0.0883	С	-2.2921	1.4101	0.1469
С	4.2701	0.4346	-0.321	С	4.2547	0.435	-0.314	С	4.2877	0.4426	-0.3015
N	-2.2681	-0.999	0.1658	Ν	-2.2875	-0.9933	0.1385	Ν	-2.2503	-0.9941	0.175
С	-4.3492	0.173	0.3318	С	-4.3703	0.1797	0.2688	С	-4.3347	0.1765	0.3066
Н	-4.2419	2.3228	0.2818	Н	-4.2617	2.3291	0.2123	Н	-4.2272	2.3266	0.2714
Н	5.248	0.8922	-0.3861	Н	5.2323	0.8916	-0.388	Н	5.2648	0.9002	-0.3758
Н	-1.7414	2.3205	0.0571	Н	-1.7582	2.3255	0.0281	Н	-1.7227	2.326	0.0951
N	0.6303	1.1563	-0.1109	Ν	0.6155	1.1601	-0.0994	N	0.6501	1.1634	-0.057
С	1.8971	0.6119	-0.1864	С	1.8824	0.6146	-0.1661	С	1.9166	0.6196	-0.1381
С	2.9501	-1.611	-0.2023	С	2.9339	-1.6093	-0.1802	С	2.9684	-1.6035	-0.182
С	-3.6884	1.3939	0.2489	С	-3.7081	1.4	0.191	С	-3.6728	1.3981	0.2443
Н	-4.0733	-1.9621	0.3465	Н	-4.0955	-1.9553	0.2942	Н	-4.0585	-1.9586	0.3147
Н	2.8829	-2.6901	-0.174	Н	2.8661	-2.6883	-0.1505	Н	2.9009	-2.6827	-0.1629
Ar	1.0298	-0.0704	3.2776	Ar	-2.1603	0.0711	3.5702	Ar	1.027	-0.0954	3.3281
								Ar	0.5769	-0.1883	-3.4279

Table T4: Continues

	PBI-	Ar ₂ -b		PBI-Ar ₂ -c					PBI-	Ar ₂ -d	
Atom	X	Y	Z	Atom	X	Y	Z	Atom	Х	Y	Z
Н	-5.4592	0.1104	0.3376	Н	-5.495	0.139	5.0E-4	Н	-5.4833	0.1356	0.4305
С	-3.6253	-1.0	0.2111	С	-3.6584	-0.9743	0.0063	С	-3.6513	-0.9788	0.3118
С	-1.6681	0.1769	0.0597	С	-1.694	0.1992	-0.0352	С	-1.6939	0.1935	0.1374
Н	-0.0222	-1.9645	-0.0199	Н	-0.0512	-1.944	0.0213	Н	-0.0554	-1.952	0.0542
Н	3.1842	2.3166	-0.2474	Н	3.1719	2.3279	-0.1322	Н	3.1577	2.3183	-0.2738
Н	5.0561	-1.5553	-0.2972	Н	5.0354	-1.5474	-0.0439	Н	5.0177	-1.5591	-0.3393
С	3.1157	1.2378	-0.2342	С	3.1005	1.2497	-0.0969	С	3.0869	1.2399	-0.2474
С	4.1501	-0.9657	-0.2602	С	4.13	-0.9557	-0.0471	С	4.1146	-0.9666	-0.2823
С	-0.2128	0.1257	-0.0359	С	-0.236	0.1456	-0.0322	С	-0.2401	0.1384	0.0272
С	1.7927	-0.8034	-0.146	С	1.7704	-0.7874	-0.0166	С	1.7612	-0.7969	-0.1069
N	0.4473	-1.0762	-0.0651	Ν	0.4222	-1.0569	0.0036	Ν	0.4166	-1.0654	7.0E-4
С	-2.3412	1.3991	0.097	С	-2.3661	1.4221	-0.0617	С	-2.3647	1.4169	0.1642
С	4.2442	0.4367	-0.2809	С	4.228	0.446	-0.09	С	4.2117	0.4353	-0.317
N	-2.2985	-1.0049	0.1146	Ν	-2.3283	-0.9813	-0.0046	Ν	-2.3252	-0.9864	0.2098
С	-4.3827	0.1642	0.2568	С	-4.4155	0.1909	-0.0126	С	-4.407	0.1869	0.3464
Н	-4.2761	2.3142	0.231	Н	-4.3043	2.3403	-0.0651	Н	-4.2978	2.3363	0.2944
Н	5.2222	0.8954	-0.3336	Н	5.2084	0.902	-0.1189	Н	5.1891	0.8908	-0.4001
Н	-1.7723	2.3156	0.0502	Н	-1.794	2.3375	-0.0864	Н	-1.7949	2.3319	0.1017
N	0.6023	1.1546	-0.0958	Ν	0.5831	1.1725	-0.0669	Ν	0.5763	1.1647	-0.055
С	1.87	0.6115	-0.1652	С	1.8516	0.6268	-0.0598	С	1.8416	0.6177	-0.1406
С	2.9244	-1.6106	-0.1925	С	2.9013	-1.5972	-0.0097	С	2.8895	-1.6076	-0.1768
С	-3.7216	1.3861	0.1973	С	-3.7501	1.4114	-0.049	С	-3.7445	1.4071	0.2706
Н	-4.1058	-1.9706	0.2556	Н	-4.1422	-1.9439	0.033	Н	-4.133	-1.9481	0.3685
Н	2.8577	-2.6899	-0.1744	Н	2.8315	-2.676	0.0214	Н	2.8205	-2.6866	-0.1505
Ar	1.2579	-0.1135	3.2768	Ar	0.7155	-0.2247	-3.4117	Ar	-2.1978	0.0803	3.6441
Ar	-2.4594	0.0494	3.5819	Ar	-2.4049	0.0773	3.4258	Ar	-2.7305	-0.0591	-3.2436

Table T4: Continues

	PBI-	Ar ₃ -a			PBI-	Ar ₃ -b			PBI-	Ar ₃ -c	
Atom	X	Y	Z	Atom	X	Y	Z	Atom	X	Y	Z
Н	-5.5795	0.1708	0.6196	Н	-5.596	0.1617	0.7382	Н	-5.5923	0.1489	-0.1209
С	-3.7597	-0.9538	0.4309	С	-3.7763	-0.961	0.5379	С	-3.7599	-0.9703	-0.1639
С	-1.8047	0.2071	0.1702	С	-1.83	0.2007	0.224	С	-1.7908	0.1963	-0.1491
Н	-0.1791	-1.9462	0.0404	Н	-0.2037	-1.9514	0.0873	Н	-0.1541	-1.9529	-0.2117
Н	3.0343	2.3064	-0.4569	Н	2.994	2.3008	-0.5086	Н	3.0831	2.3105	-0.1253
Н	4.8736	-1.5799	-0.5641	Н	4.8414	-1.5824	-0.5814	Н	4.9339	-1.5697	-0.2309
C	2.96	1.2285	-0.4188	С	2.9223	1.2233	-0.4579	С	3.0081	1.2324	-0.1539
C	3.976	-0.9829	-0.4759	С	3.9431	-0.9864	-0.4949	С	4.0304	-0.9755	-0.2155
C	-0.3564	0.1445	0.0059	С	-0.3862	0.1383	0.0235	С	-0.3326	0.1378	-0.1629
C	1.633	-0.8008	-0.206	С	1.6015	-0.8061	-0.2097	С	1.6711	-0.8012	-0.1983
N	0.2938	-1.062	-0.0369	N	0.265	-1.0679	-0.0198	Ν	0.3218	-1.0669	-0.1989
С	-2.4682	1.4342	0.2151	C	-2.4953	1.4267	0.2658	С	-2.4585	1.4214	-0.1112
C	4.0776	0.4182	-0.5274	С	4.0409	0.4142	-0.5647	С	4.1328	0.4258	-0.1817
N	-2.4387	-0.9693	0.2747	N	-2.4584	-0.9753	0.3591	Ν	-2.4297	-0.9819	-0.1742
C	-4.5075	0.216	0.4896	С	-4.5262	0.2076	0.591	С	-4.5126	0.1973	-0.129
Н	-4.3899	2.3645	0.419	Н	-4.4154	2.3551	0.4892	Н	-4.3932	2.346	-0.0717
Н	5.0527	0.8684	-0.6547	Н	5.0142	0.865	-0.7041	Н	5.1147	0.8789	-0.1728
Н	-1.8966	2.3458	0.125	Н	-1.928	2.3382	0.1513	Н	-1.883	2.3347	-0.0897
Ν	0.4601	1.1662	-0.1201	N	0.4261	1.1599	-0.1288	Ν	0.49	1.1622	-0.1417
C	1.7179	0.6129	-0.2556	С	1.6829	0.6071	-0.277	С	1.7569	0.6129	-0.163
C	2.7536	-1.6172	-0.3144	C	2.7234	-1.6214	-0.3163	С	2.7998	-1.614	-0.2231
C	-3.8427	1.4322	0.3779	С	-3.8665	1.4237	0.4522	С	-3.8426	1.4154	-0.1017
Н	-4.2433	-1.9203	0.5147	Н	-4.2558	-1.9273	0.6438	Н	-4.2474	-1.9382	-0.183
Н	2.6811	-2.6955	-0.2743	Н	2.6539	-2.6992	-0.2606	Н	2.7267	-2.6927	-0.2468
Ar	-2.4189	0.1394	3.7234	Ar	-2.3908	0.1783	3.7937	Ar	4.2331	-0.3492	3.3904
Ar	0.1708	-0.2334	-3.4572	Ar	-3.0174	-0.1467	-3.0883	Ar	0.5763	-0.2474	3.2096
Ar	1.2801	-0.0329	3.2347	Ar	1.2968	-0.0149	3.2238	Ar	-3.0932	-0.0039	3.327