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Computational details

DFT details

Periodic density functional theory (DFT) calculations were performed using Quantum ESPRESSO1,

the BEEF-vdw exchange-correlation functional2 in combinations with ultra-soft Vanderbilt

pseudo-potentials3, and the atomic simulation environment (ASE)4. Plane waves and charge

densities were expanded up to a kinetic energy of 500 eV and 5000 eV, respectively.

Site stabilities of individual atoms were computed by single-point DFT calculations. The

site stability of site A Esite(A) is defined in equation (1), where Edefect−free is the total energy

of the original, defect-free cluster, EA is the total energy of the free-standing atom A and

Edefective is the original structure without atom A:

Esite(A) = Edefect−free − EA − Edefective (1)

The spin states of free-standing atoms were thereby:

Table SI-1: Spin states of atoms in vacuum (box of (15× 15× 15)Å3).

Atom mag/cell (Bohr)
Ag 1.0
Au 1.0
Cu 1.0
Co 3.0
Rh 3.0
Ir 3.0
Fe 4.0
Os 4.0
Mn 5.0
Re 5.0
Ni 2.0
Pd 0
Pt 0
Ru 0

The cohesive energy Ecoh of a cluster AxBy is computed as shown in equation (2), where
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Edefect−free is the total energy of the defect-free cluster, EA/B is the total energy of the free-

standing atom A/B, and x and y are stoichiometric coefficients. As the cohesive energy is

given per atom, it can be interpreted as mean site stability of all atoms in the cluster.

Ecoh(AxBy) = (Edefect−free − x× EA − y × EB)/(x+ y) (2)

Cluster details

Mono- and bimetallic sub-nanometer clusters with 3-13 atoms were generated by randomly

positioning atoms in a box of (15× 15× 15)Å3. The box was located in a (30× 30× 30)Å3

unit cell. A genetic algorithm5 combined with effective medium theory (EMT) potentials

was then used to search for stable particle structures. This search was performed using a

starting population of 40 candidates of random atomic positions per particle stoichiometry.

The lowest energy candidate in the final population of the EMT-based search was then

further optimized with DFT. The DFT calculations for clusters and nano-particles were

performed with a (1×1×1) k-point set using the Monkhorst-Pack scheme for Brillouin-zone

integration.6 All possible unique combinations of AxBy with A, B ∈ {Ni, Cu, Pd, Ag, Pt,

Au} and (x+y) ∈ {3, 4, 5 . . . 13} were computed.

Nanoparticle details

55-atom nanoparticles were generated using the layer specification approach within ASE,

considering only (111) and (100) surfaces. Specifying 2 layers in each direction resulted

in a cuboctahedral, 55-atom nanoparticle. From this template, we generated monometallic

nanoparticles by setting the interatomic distances to those found in the respective bulk

material. For bimetallic particles, we used the lattice constant estimated via Vegard’s law7

to adjust interatomic distances.
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Extended surfaces details

Metal surfaces were represented by (2× 2) surface unit cells of slabs consisting of 7 atomic

layers for monometallic systems. For slabs, we used a (7 × 7 × 1) k-point mesh and slab

replicas were separated by more than 12 Å. For the slabs and 55 atom nanoparticles, all

atoms were constrained to their bulk geometries.

We optimized the metal lattice constants with the computational set up specified in the

main manuscript. With this set up, we obtained the following lattice parameters, which we

used to set up nanoparticles and slabs.

Table SI-2: Lattice constants as calculated with our computational set up, see computational
details.

System a (Å)
Ag 4.22
Au 4.20
Cu 3.66
Pd 3.99
Pt 3.99

Alloy stability model

One objective of this work is to compare the multi-feature machine-learning (ML) based

models with the two feature physics-based alloy-stability model (ASM).8–13 The ASM was

parametrized using the RPBE functional.14 We do not expect the choice of the XC functional

to influence model accuracy, since model accuracies are represented by differences between

model predictions and DFT calculations. Nevertheless, we computed selected site stabilities

on Ag, Au, and Cu systems using both RPBE and BEEF-vdW. Parity plots comparing

predicted and DFT calculated values for both XC functionals are shown in Figure SI-1.

Clearly, both functionals show a mean averaged errors (MAEs) of approximately 0.03 eV.

We performed additional DFT calculations on size-selected Pt and Au cubo-octahedral

nanoparticles (CUBO) ranging from 13 atoms, 55 atoms, 147 atoms, 175 atoms (truncated

309 atom clusters) to 309 atoms. Our space of materials for extended surfaces consisted of
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(111), (100), and (211) crystal planes of Ir, Pd, Pt, and Rh. The calculation details are

similar to our earlier papers introducing the alloy stability model8,9 with the salient details

summarized below. We computed atomic site stabilities from first principles following equa-

tion (1) for atoms having diverse coordination numbers ranging from 3 to 12. Total energies

were computed using the RPBE functional in Quantum ESPRESSO1 within the Atomic

Simulation Environment (ASE).4 Total energies were determined with kinetic energy cutoffs

of 500 eV and density cutoffs of 5000 eV using Vanderbilt ultrasoft pseudopotentials.3 Spin

polarized calculations were used for 13 and 55 atom clusters since these clusters have signif-

icant magnetic moments. All other calculations were spin paired. To facilitate convergence,

we used fermi dirac smearing with a width of 0.1 eV. Kohn Sham equations were iteratively

solved with total energies converged to a threshold of 10−5 eV and forces to 0.02 eV/Å. For

all nanoparticles, we ensured a vacuum of at least 10 Å. Total energies of nanoparticles were

determined using a (1x1x1) Monkhorst Pack k-point grid.6 An (8x8x1) k-point grid was used

for (111) and (100) surfaces while a (6x6x1) k-point grid was used for (211) surfaces. For

extended surfaces, a dipole correction was employed along the z direction to reduce spurious

electrostatic interactions between periodic images.
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Figure SI-1: Parity plots of ASM-predicted site stabilities vs true DFT-based site stabilities
computed using RPBE and BEEF. The mean absolute error of predictions are comparable
for both DFT functionals.

We predict atomic site stabilities for metal atoms in nanoparticles and crystal planes using

the alloy stability model. The alloy stability model calculates site stabilities based on the site

composition and coordination numbers of the first coordination shell. The interested reader

is referred to the following publications for additional details.8–11 Parity plots comparing

DFT calculated site stabilities with model predictions are shown in Figure SI-2. Model

predictions on nanoparticles determined with the alloy stability model parametrized using

extended surfaces are shown in the blue series in Figure SI-2. Significant deviations from

the parity line, especially for the 309 atom nanoparticles indicate that there are residual

quantum and finite size effects. To account for these effects, we re-parametrized the alloy

stability model for a given nanoparticle size (e.g. 147 atoms) by now fitting the model to DFT

derived atomic site stabilities corresponding to the same nanoparticle size. We evaluated the

accuracy of the re-parametrized alloy stability models using a leave one out cross validation.
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The leave one out predictions are shown by the red series in Figure SI-2.

Figure SI-2: Parity plots comparing atomic site stabilities predicted using the Alloy Stability
Model (ASM) with DFT derived values. The blue series represents predictions using model
parameters fitted to extended surfaces. The red series depicts model predictions when the
ASMmodel is re-parametrized for a specific size range. Due to quantum and finite size effects,
the as parametrized ASM does poorly on 13 atom CUBO clusters (MAE of 1.27 eV). These
13 atom clusters are single point calculations because the ASM does not include structral
features like the machine learning model. For 55, 147, and 309 atom nanoparticles, the re-
parametrized ASM is predictive within 0.15 to 0.20 eV, which are errors typical to screening
paradigms. Calculations with 309 atom nanoparticles are also single point to minimize
computational cost. Selected geometry optimizations reveal that 309 atom nanoparticles
have minimal reconstructions, validating this assumption.

Machine learning details

We deployed various machine learning (ML) models, including ordinary linear regression

(ORL), Gaussian process regression15 (GPR), neural networks16 (NN), random forests
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(RF), and extreme gradient boost17 (XGB) decision trees. We used the scikit-learn packages

for ORL/GPR/RF and keras16/ternsorflow for NN, as well as the XGBoost package for XGB.

No regularization was used for the ORL. The Gaussian process regression was set up using

a linear and a radial basis kernel of length scales between 10−3 − 103. We applied hyper-

parameter optimization using the randomized cross-validation (cv) scheme to optimize the

XGB and the random forest. Details on the neural network, including the architecture

and learning curve are shown in the supporting information, section 3.3. We applied early

stopping with a patience of 50 epochs in order to prevent overfitting.

A genetic algorithm (GA) for feature selection was implemented, the module is available

on Github [https://github.com/schlexer/CatLearn]. The algorithm uses a selection of p

features (=genes) from the total feature pool (ptot=28 features) to form a chromosome.

A random population of n chromosomes is initialized by randomly selecting chromosomes

from the pool of all unique chromosomes; the number of unique chromosomes being given

by ptot!
p!(ptot−p)!

. For each chromosome, it’s fitness (mean of 4f-cv R2 on the training set)

is calculated. The chromosomes are ranked according to their fitness of which m parent

chromosomes are selected from the top to create m-1 offspring chromosomes via combination

of 2 parent chromosomes, respectively. As the gene order in the chromosome doesn’t matter,

the parent chromosomes are shuffled before crossover. Then, the first half (or the integer

rounding up) of parent 1 is combined with the second half (or the integer rounding down)

of parent 2. If any, duplicated genes in the offspring are replaced by a random choice of

genes that aren’t already in the chromosome (random mutation). Then the fitness of the

offspring is calculated and the least well performing m-1 members of the population are

replaced by the offspring. The population is ranked again, and the procedure is repeated for

g generations.

In order to balance exploration vs exploitation, we made sure that all features were

available in the population at all times. We created a sufficiently large population for the

algorithm to run smoothly (less noise during evolution). Additionally, we use an aggressive
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mutation rate where in each evolution, 5-20% of all genes are mutated. The exact percentage

is chosen via a uniform random sampling within the bounds of 5-20%. This percentage range

enhances the algorithm’s exploration. We ran the genetic algorithm over 50+ evolution steps

to further ensure balance between exploration and exploitation.

Especially for small population sizes n→ ptot, the occurrence probability of weak genes

can drop to 0 and therefore the gene can become absent in the evolution process. In order

to prevent this, we monitor the homogeneity index, defined as 1− ppop/ptot, where ppop is

the number of unique features in the population. Furthermore, at each generation, after

the crossover, a random percentage of chromosomes between 0-20% are chosen for random

mutation. Here, one random gene position is selected and replaced by a random choice of

the residual ptot − p genes which were absent in the original chromosome.

Featurization

The coordination numbers of atomic sites and the coordination number of their neighbors,

as well as relevant statistics thereof where automatically gathered. A neighbor is defined as

an atom in a vicinity of 3 Å. Note that this may lead to more neighbors for smaller atoms.

We assume that this discrepancy does not affect the performance of our models, however

we abstained from investigating the effect of different neighbor definitions, as this would

exceed the scope of this study. We computed not only the coordination number of the site

itself, but also that of its neighbors. Chemical intuition suggests that if the neighbors have

many neighbors themselves, they would be forming less strong bonds to the site of interest,

although of course there can be odd-even effects related to the valence of each respective

neighbor, Figure SI-SI-3.
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Figure SI-3: Distributions of site features. Green: Site neighbor coordination number. Red:
Site distances. Blue: Site angles.

Site distances are distances between the atomic position of the site and its neighbors,

respectively. As each atomic site has several neighbors, statistics like the mean and stan-
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dard deviation of distances represent the nature of the structure in terms of order/disorder

(amorphicity in broader terms) and bond strength.

Another interesting structural metric is the angle between 3 atoms. Site angles are

defined so that the site constitutes the central atom. That is, a site angle is the smallest

possible angles measures between Ni − S− Nj, where Ni,j denote the neighbors with i 6= j

and S denotes the site.

As many of the features are derived from the same set of values, such as distance mean,

max, standard deviation etc. are measures of the same set of numbers, we can assume

some linear correlation between the features. In order to obtain a rough idea on feature

correlations, we computed the Pearson feature correlation matrix, shown in Figure SI-4.
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Figure SI-4: Pearson correlation matrix of features. In bimetallic clusters, element 1 is
denoted by the number 1 and element 2 by the number 2. Z is the atomic number, Val is the
valence electrons in the elementary state, CN is the coordination number and γ is the angle
between the atomic site and two neighboring atoms, and d denote inter-atomic distances.
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Model training and feature selection

Training set size convergence

We investigated the convergence of our performance metrics which is the mean R2 in 4-fold

cross-validation with the training set size, including all features. Note that the number of

the cross-validation folds is informed by the training set size. A smaller set will need more

folds to increase the training split to a reasonable size, so the model can learn from sufficient

examples.We consistently employed a leave one out analysis for the alloy stability model

since the training sets for nanoparticles contained between 15 to 35 adsorption events. Earlier

studies8,9 showed that a minimum of 14 adsorption events is required to fit the 10 parameters

per metal identity (e.g. Au) Interestingly, the data-greedy neural network algorithm already

performs well with a smaller training set size. All algorithms reach a plateau at a training

set size of 300-400 data points, Figure SI-5.
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Figure SI-5: Convergence of mean R2 on 4-fold validation set with training set size.

Ordinary linear regression

The ordinary linear regression model using all features reaches a R2 value on the test set

of 0.81. As some features show collinearity (see Figure SI-4), we tested, if we could achieve

similar performance using less features. To quantify the degree of linear correlations in

models, we use the sum of pair-wise Pearson feature correlations, Σi<j Pij < 1. Indeed, using

5 features, the R2 of 0.79 is close to that using all features (0.81), and a few of the solutions

showing an R2 close to 0.8 even have small feature correlation Σi<j Pij < 1, Figure SI-6.

However, for models with 5 features, the majority of the models show significant feature

correlation Σi<j Pij > 1. We therefore conclude that a feature space of 5 is sufficient to for a

subsequent analysis of the importance of individual features.
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Figure SI-6: Sum of pair-wise Pearson feature correlations, Σi<j Pij < 1 and performance
metrics mean R2 on 4-fold cross validation set for linear models using 2, 3, 4 and 5 unique
features respectively.

Neural network

We designed the architecture of the neural network manually by comparing cross-validation

performances on the cluster site stability training set. As we’re interested in a proof of

concept that the featurization scheme works for neural networks, we abstain from performing

an in-depth model selection. In other words, we are aware that there are more sophisticated

hyper-parameter optimizations, but as this network performed sufficiently well, we abstained

from further systematic investigations of this matter. The architecture consists of 6 fully

connected layers and one dropout layer as the second layer. We closely monitored the

learning curve of the NN to avoid over-fitting. During an epoch, the neural net trains on
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each training point (or batches of training points). After having gone over all training points,

the neural net updates its parameters. Then, it can train again on the training set with the

new parameters, which would correspond to the second epoch. After using early stopping

after 150 epochs, we still slightly over-fit to the data. The learning curve is shown in Figure

SI-7. For high-throughput studies, we recommend trying out neural networks if your training

data set is large.

0 50 100 150
Epochs

0.0

0.1

0.2

0.3

0.4
MAE-val
MAE-train
Loss-val
Loss-train

Figure SI-7: Learning curve of the neural network. The mean absolute error and the loss
decrease with the number of epochs the neural net goes over the training data.
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Feature importance

Clusters

Figure SI-8: Feature distributions of populations (size 200) after 50 generations of evolution
for the neural network (offspring size 10) and the XGB (offspring size 20). Please note that
the feature occurrence probability from the GA analysis is not generally transferable to other
materials or other models. However, we make the observation that for the metal clusters and
nano-particles we investigated, an atomic identifier such as the atomic number or valence
electrons, followed by structural features is the consistent trend.
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Figure SI-9: Model performances for surface site stabilities on full feature data set. MAE
given in eV. Important features are mainly distance-based.

Table SI-3: Comparing prediction errors in binding energies of metal atoms and catalytic
descriptors across different feature sets. All feature sets for metallic systems listed below
yield mean averaged errors between 0.1 to 0.2 eV on the test sets considered by the respective
studies.

Scheme Mean average error, eV Comments
SOAP18 0.08 eV Adsorption energies of O*, N*,

NO* on RhAu alloys
Coordination-based19 0.15 eV Adsorption energies of OH*,

CO*, CH3* on monometallic
Ag, Au, and Cu

Coordination-based (8–11, al-
loy stability model)

0.1 to 0.2 eV based on com-
position, and whether the sys-
tem is an extended surface or
a nanoparticle

Adsorption energies of metal
atoms on extended sur-
faces and nanoparticles of
monometallic/bimetallic Ag,
Au, Cu, Ir, Pd, Pt, and Rh

Moments of projected d-
states20

0.15 eV OH*, O*, CH*, C* adsorption
on d-block alloys

Moments of projected d-
states21

0.13 eV CO* adsorption on (100) and
(111) Cu-alloys

Graph-based neural net-
works22

0.2 eV CO* and H* adsorption on
transition metal alloys
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