Electronic Supporting Information for:

An Experimental and Master-Equation Modeling Study for the Kinetics of the Reaction between Resonance-Stabilized (CH₃)₂CCHCH₂ Radical and Molecular Oxygen

Satya P. Joshi, Timo T. Pekkanen, Prasenjit Seal, Raimo S. Timonen, Arkke J. Eskola^{*}

Molecular Science, Department of Chemistry, University of Helsinki, P.O. Box 55(A.I. Virtasen

aukio 1), FIN-00014, Helsinki, Finland

*corresponding author: arkke.eskola@helsinki.fi

Table of content

Table S1	
Figure S1	
Figure S2	
Table S2	
Table S3	

T	P _{He}	λ_{I}	λ2	В	С	D
(K)	(Torr)	(s ⁻¹)	(s ⁻¹)			
325	0.86	174.4 ± 2.9	15.2 ± 1.3	78.7	1553.1 ± 12.9	163.0 ± 9.4
325	0.86	246.1 ± 4.1	17.8 ± 1.6	60.9	1105.3 ± 10.4	82.8 ± 5.2
330	0.88	267.8 ± 7.2	18.4 ± 1.8	193.1	1075.3 ± 18.3	104.5 ± 7.2
335	0.90	192.6 ± 3.6	11.8 ± 0.9	80.6	1305.6 ± 11.9	203.1 ± 8.2
337	0.90	218.2 ± 6.0	15.3 ± 1.0	200.3	1167.2 ± 16.8	231.9 ± 9.8
338	0.91	225.3 ± 5.6	17.2 ± 1.2	267.4	1877.1 ± 23.4	333.9 ± 15.2
344	0.92	221.1 ± 5.8	17.2 ± 0.6	186.9	1387.0 ± 18.7	452.0 ± 11.5
348	0.94	211.4 ± 6.2	16.0 ± 0.6	229.4	1479.8 ± 21.6	612.1 ± 14.1
353	0.96	190.5 ± 21.2	17.4 ± 1.6	248.0	575.6 ± 30.8	352.2 ± 23.9
356	0.96	228.0 ± 12.1	16.4 ± 0.4	278.1	1025.6 ± 29.5	947.1 ± 15.9
356 ^b	1.22	224.6 ± 98.7	8.5 ± 1.3	39.1	61.0 ± 15.3	52.2 ± 3.3
358	0.97	269.6 ± 57.9	14.9 ± 1.6	598.8	466.6 ± 58.2	395.5 ± 24.5
361	0.48	182.8 ± 11.1	16.6 ± 0.5	170.9	659.6 ± 19.6	663.2 ± 14.4
361	0.96	292.1 ± 15.4	15.1 ± 0.4	162.8	601.8 ± 19.2	500.7 ± 7.3
361 ^b	1.22	208.7 ± 83.5	9.1 ± 1.1	25.4	39.7 ± 9.6	53.8 ± 3.1
361°	3.61	217.5 ± 60.6	23.5 ± 2.2	26.9	38.6 ± 5.2	53.8 ± 4.4
361°	5.58	251.6 ± 86.3	26.2 ± 2.1	29.3	35.8 ± 6.1	60.8 ± 4.4
362	0.97	287.2 ± 23.3	16.3 ± 0.3	324.8	958.3 ± 56.7	1357.3 ± 15.7
367	0.71	299.0 ± 40.8	15.7 ± 0.4	262.7	567.8 ± 58.7	867.3 ± 14.7
373	0.76	383.6 ± 67.3	15.5 ± 0.3	458.6	760.7 ± 126.8	2050.7 ± 18.5
373	1.21	414.2 ± 71.4	14.8 ± 0.3	446.5	684.3 ± 100.8	1773.2 ± 16.6

Table S1. The experimental conditions and bi-exponential fitting parameters for intermediate temperature range measurements of reaction (1a, -1a).^a Statistical uncertainties shown are 1σ .

^a Xe-lamp with a sapphire window was used for detection, Pyrex-glass reactor (id = 1.65 cm) with polydimethylsiloxane (PDMS) coating, unless otherwise stated. ^b 1-chloro-3-methyl-2-butene precursor was used for the production of $(CH_3)_2CCHCH_2$ radical, pyrex-glass reactor (id = 1.65 cm) with halocarbon wax coating. ^c Stainless steel reactor (id = 0.8 cm) with halocarbon wax coating.

 $(\mathbf{R}, \Delta H_{(298\mathrm{K})} = 0 \text{ kcal mol}^{-1})$

 $(TS1, \Delta H_{(298K)} = 38.89)$

 $(TS2, \Delta H_{(298K)} = 53.08)$

 $(TS3, \Delta H_{(298K)} = 63.98)$

 $(TS4, \Delta H_{(298K)} = 88.47)$

 $(TS5, \Delta H_{(298K)} = 81.02)$

 $(TS6, \Delta H_{(298K)} = 90.79)$

 $(TS8, \Delta H_{(298K)} = 53.54)$

 $(TS10, \Delta H_{(298K)} = 50.64)$

Experimental uncertainty in the high-temperature range measurements

The Figure S2 below shows the bimolecular plot of reaction (1b) measured at T = 501 K and P = 2.9Torr. It can be seen that the measured k'_{1b} values appear to show a more rapid rise in going from $k^{(R)}_{wall}$ at $[O_2] = 0$ to the slowest k'_{1b} decay with oxygen at $[O_2] = 6.7 \times 10^{-15}$ molecule cm⁻³ than in going from this value to the fastest k'_{1b} decay with oxygen at $[O_2] = 30 \times 10^{-15}$ molecule cm⁻³. This first rise may be due to the heterogeneous wall processes. The linear fits were performed to the data sets that includes (solid red line) and excludes (solid blue line) the $k^{(R)}_{wall}$ data-point and fits return the k_{1b} values 2.8×10^{-15} cm³ molecule⁻¹ s⁻¹ and 2.1×10^{-15} cm³ molecule⁻¹ s⁻¹, respectively. Comparing these k_{1b} values give maximum uncertainty $2.8 \times 10^{-15} / 2.1 \times 10^{-15} = 1.33$, which gives ± 33 % uncertainty. In our high-temperature range measurements we often, but not always, observed similar behavior. We take a conservative approach and we estimate our experimental uncertainty to be factor of two, upper limit = $2 \times k_{1b}$, lower limit = $0.5 \times k_{1b}$, in our high-temperature range measurements.

Figure S2. A bimolecular plot of $(CH_3)_2CCHCH_2 + O_2 \rightarrow \text{products reaction (1b), measured at } T = 501 \text{ K}$ and P = 2.9 Torr. The lower right corner of the plot depicts $(CH_3)_2CCHCH_2$ radical decay profile $(k'_{1b} = 96.5 \pm 9.5 \text{ s}^{-1})$, filled circle in the plot). The uncertainties shown are 1 σ . The solid red and blue line depicts the linear fits performed to the data that includes and excludes the $k_{wall}^{(R)}$ datapoint, respectively.

Table S2. The MN15/Def2TZVP and CCSD(T)/CBS//MN15/Def2TZVP energies (kcal/mol) of stationary points (relative to reactants $R + O_2$) for (CH₃)₂CCHCH₂ (R) + O₂ reaction, along with their T1 diagnostic values and optimized geometires.

Species	ΔΖΡΕ	MN15/Def2TZ VP	ROHF- CCSD(T)/CBS	T1	Structure
$R + O_2$	0	0	0	0.024, 0.017	ò—ò
P1	1.08	-2.96	-3.08	0.011, 0.032	лет но—о́
P2	- 0.0246	-73.5	-74.2	0.026, 0.013	
Р3	0.905	-22.9	-21.2	0.011, 0.013	но
P4	1.05	-40.5	-37.7	0.021, 0.013	
Р5	1.78	-40.6	-40.5	0.011, 0.013	о но
P6	0.312	-34.5	-32.6	0.018, 0.015	
P7	-0.125	-70.0	-69.7	0.021, 0.015	Ì, → → →

Species	ΔΖΡΕ	MN15/Def2TZVP	ROHF-CCSD(T) / CBS	T1	Structure
Int1NT (ROO _(nt))	3.79	-21.9	-20.2	0.023	oo

Int1T (ROO _(t))	4.28	-20.1	-17.6	0.023	>=o-ċ
Int2NT	3.14	-7.52	-3.66	0.015	0-0
Int2T	3.50	-18.0	-15.3	0.023)O-OH
Int3T	3.76	-5.23	0.0200	0.015	
Int4	3.82	-22.2	-18.1	0.014	o-o
Int5NT	4.28	-49.7	-	-	° °
Int5T	3.55	-51.1	_	-	, No io

Species	ΔZPE	MN15/Def2TZV P	ROHF-CCSD(T) / CBS	T1
TS1T2TA	0.810	3.32	6.35	0.024
TS1T2TB	0.846	3.35	6.42	0.022

TS1NT2NTA	2.55	7.23	10.1	0.037
TS1NT2NTB	2.49	6.40	-	-
TS1NT4A	2.96	5.22	7.33	0.025
TS1NT4B	2.74	8.97	-	-
TS1NTP1	0.144	4.73	6.11	0.029
TS1T3TA	3.03	6.70	10.4	0.033
TS1T3TB	3.01	8.15	-	-
TS1T4A	3.14	7.76	10.5	0.027
TS1T4B	3.01	9.34	-	-
TS2NT5NT	2.48	12.3	-	-
TS2NTP2A	1.82	9.34	-	-
TS2NTP2B	1.59	5.84	-	-
TS2TP3	1.65	3.17	2.07	0.041
TS2TP5	1.45	12.8	10.9	0.026
TS3T5T	2.83	10.8	-	-
TS3TP7A	1.78	12.1	-	-
TS3TP7B	1.58	14.3	-	-
TS4NT5NT	2.17	10.9	-	-
TS4T5T	2.15	8.61	-	-

Table S3. The results of CASPT2/CBS//MN15/Def2TZVP calculations for the stationary points of $(CH_3)_2CCHCH_2$ (R) + O₂ reaction. Energies in units of kcal/mol.

Species	Active Space	CASPT2/CBS	ROHF-CCSD(T)/CBS (T1 diagnostic)
P1 Channel	13,11		
Int1NT (ROO _(nt))		0	0 (0.023)
TS1NTP1		22.8	26.3 (0.029)
P3 Channel	9,9		
Int1T (ROO _(t))		0	0 (0.023)
Int2T		-1.22	2.28 (0.024)
TS1T2TA		22.1	23.9 (0.024)
TS1T2TB		22.2	24.0 (0.022)
TS2TP3		12.4	19.6 (0.041)
Non-terminal four- membered ring channel	9,9		
Int1NT (ROO _(nt))		0	0 (0.023)
Int2NT		15.4	16.5 (0.015)
ts1NT2NTA		26.7	30.2 (0.037)
ts1NT2NTB		27.6	-
ts2NT5NT		29.4	-
ts2NTP2A		28.2	-
ts2NTP2B		31.2	-
Terminal four- membered ring channel	9,9		
Int1T (ROO _(t))		0	0 (0.023)
Int3T		15.9	17.6 (0.015)
TS1T3TA		26.1	27.9 (0.033)
TS1T3TB		25.6	-
TS3T5T		26.9	-
TS3TP7A		31.6	-
TS3TP7B		33.2	-

Five-membered ring channel	7,7		
Int1NT (ROO _(nt))		0	0 (0.023)
Int1T (ROO _(t))		3.04	2.61 (0.023)
Int4		0.0400	2.09 (0.014)
ts1NT4A		24.9	27.5 (0.025)
ts1NT4B		28.7	-
ts1T4A		28.3	30.7 (0.027)
ts1T4B		29.9	-
ts4NT5NT		27.0	-
ts4T5T		25.5	-