Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2021

Supplementary Material: Molecular Excited State Calculations with Adaptive
Wavefunctions on a Quantum Eigensolver Emulation

Hans Hon Sang Cha]
Department of Materials, University of Ozxford, Parks Road, Oxford OX1 3PH, United Kingdom

Nathan Fitzpatrick
Cambridge Quantum Computing Ltd., 9a Bridge Street, Cambridge CB2 1UB, United Kingdom

Javier Segarra-Mart{
Instituto de Cliencia Molecular, Universitat de Valencia, PO Box 22085 Valencia, Spain

Michael J. Bearpark
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London,
White City Campus, 82 Wood Lane, London W12 0BZ , United Kingdom

David P. Tew
Physical and Theoretical Chemical Laboratory, University of Ozford,
South Parks Road, Ozford OX1 3QZ, United Kingdom
(Dated: November 11, 2021)

The is a technical document detailing the functional-
ities of an open-sourced package, the Quantum Eigen-
solver Building on Achievments of Both quantum com-
puting and quantum chemistry (QEBAB), which we
developed for investigating adaptive ansatz generation
in excited state calculations in the Variational Quan-
tum Eigensolver (VQE) framework. The code inter-
faces a number of other open-sourced packages for quan-
tum chemistry and quantum computing; PySCF[1] and
Libcint [2] for extracting the required one- and two-
electron integrals and initialising the molecule, Open-
Fermion[3] for generation and transformation of UCC ex-
citation operators, Pytket[4] for construction and compi-
lation of ansatz circuits, and any backend supported by
Pytket for circuit simulation. Additionally, in the asso-
ciated work Scipy[5] was employed for variational min-
imisation of ansatz expectation energies, as well as the
computation of operator gradients for adaptive ansatz
growth. This document serves as a how-to guide to its
usage (with annotated pseudo-code), and also as a step-
by-step introduction to the VQE.

Typical workflow as follows: the user first initialises a
molecule. The package is used to generate a set of Uni-
tary Coupled Cluster (UCC)-type excitation operators,
and construct an ansatz wavefunction out of the opera-
tors according to the users choice. The ansatz wavefunc-
tion is then transformed into a parameterised quantum
circuit, which can be simulated on a number of quan-
tum circuit simulator backends (in this work Qulacs [6]
with GPU acceleration was used). A classical optimiser
is used to adjust the parameters in the quantum circuit
until the simulated energy expectation value converges.
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I. MOLECULE INITIALISATION

Molecules are initialised as MolecularData objects
from OpenFermion:

from openfermion import MolecularData

# Initialise LiH with bond length 1.2 A

molecule = MolecularData(geometry=[(’Li’,

(0., 0., 0.)), (’H’, (0., 0., 1.2))1],
basis=’sto-3g’,
multiplicity=1)

With the OpenFermion PySCF wrapper, 1- and 2-
electron integrals are calculated, which are stored in
the MolecularData object. In this work, Restricted
Hartree-Fock (RHF) Self-Consistent Field (SCF) calcula-
tions were used. It is then possible to generate the second
quantised molecular Hamiltonian from MolecularData:
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H = hyny + E hpqa;f,aq + 5 E hpqrsa;r,a:;aras (1)
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This needs to be modified into operations on a quan-
tum computer. Using the Jordan-Wigner transform, the
creation and annihilation operators (a; and a;) in the
second quantised Hamiltonian from can be expressed in
terms of Pauli matrices o; € {0%,0Y,0*}, which con-
veniently translate directly to 1-qubit Pauli logic gates
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The second quantised qubit Hamiltonian is thus a linear
combination of Pauli terms &), P; (each term is a tensor
multiplication). The following is an example of the terms
in the series:

H=hol+hiZg+  +hXo®Z1 ®Xa+...
+hizYo®Z1 @Y @ Z3 + ... (6)

:Zhj®Pij (7)

where h; are the 1 and 2 electron integrals and hg the
nuclear Hamiltonian contribution from the SCF calcula-
tion.

We use the jordan_wigner transform function na-
tive to OpenFermion to map the fermionic operators
in the Hamiltonian into unitary Pauli matrices that
can be applied as quantum logic gates onto qubits.
We chose to store the qubit Hamiltonian as Pytket
QubitPauliOperator objects.

from openfermionpyscf import run_pyscf
from openfermion.transforms import
jordan_wigner

from pytket import QubitPauliOperator

# Calculate the 1,2 electron integrals
molecule = run_pyscf (molecule, run_scf=1)

# Hamiltonian

ham_qubit = jordan_wigner (mol.
get_molecular_hamiltonian())
ham_qubit.compress() # Now in QubitOperator
form

ham = QubitPauliOperator.from_OpenFermion (
ham_qubit)

II. GENERATING EXCITATION OPERATORS

We created custom OperatorPool classes which ini-
tialises different groups of UCC fermionic excitation op-
erators from a given input number of electrons and num-
ber of orbitals. In the reported work, only the singlet-
restricted, generalised excitations in the sUCCGSD_Pool
and sUpCCGSD_Pool classes were used. Figure [I] further
elaborates on which excitations are included The exci-
tations are constructed using OpenFermion. Both in-
herit from the OperatorPool class, which has a number

of built-in excitation operator functions described in the
following sections.

from gebab.operators import sUpCCGSD_Pool

pool = sUpCCGSD_Pool ()
pool.init(n_orb=molecule.n_orbitals,
n_occ=molecule.
get_n_alpha_electrons (),
n_vir=molecule.n_orbitals -
molecule.get_n_alpha_electrons())

A. Pauli Gadgets

The OperatorPool class transforms the fermionic ex-
citation operators into strings of Pauli operators which
maps onto quantum circuit components. Consider the
parameterised UCC state preparation operator:

v =] Om(Tm=71) (8)

where m indexes all possible single and double excita-
tions, 6,, € {67,600} and 7, € {ala;,alaa;a;}. Us-
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where each product is a tensor multiplication. An expo-
nentiated excitation term (=) forms a string of
circuit blocks (Pauli gadget), each with a single qubit ro-

tation gate parameterised to ,, of the excitation term[7].

Alternatively, the OperatorPool class can also express
excitation operators into unitary matrices that can be
used for direct matrix evaluation of the expected circuit
behaviour.

B. Analytic Gradients

The OperatorPool class also computes the expected
energy gradient of an ansatz (with respect to the free pa-

rameter ;) for each candidate excitation operator Ai in
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FIG. I: Single and double excitations. Three diagrams in the middle express spin-preserving, physical excitations.
Diagram in the far right does not preserve the spin, and is not generated.
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(A) Creating the unitary gate 156891 CNOT gates are

used to first entangle two qubits, then the rotation gate R, is

applied, followed by a second CNOT gate.
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(B) A Pauli gadget for 2 (e8®oT®To5) i 5 4 qubit circuit.

The R, gates rotate the phase of a qubit; in the 0" qubit it

rotates the phase of the qubit to the y-basis. The Hadamard

gates H generate a superposition of the |0) and the |1) state;
here it is used to access the x-basis of the qubit.

FIG. II: Examples of Pauli gadgets. Note that the each excitation term is formed of multiple Pauli gadgets, all
parameterised to the same 6.

the pool, a key aspect in the ADAPT methods. Consider
first the derivative of a single qubit rotation gate. We can
represent the rotation matrices for the three cartesian
axes as exponentials :

R(el)x :e_ieiX/Q (11)
R(al)y :e_igiy/2 (12)
R(6;); =e™10:2/2 (13)

Therefore for each differential with respect to the rotation
angles there is only a single term in the sum:
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Now consider an arbitrary unitary ansatz of the following
form:

|w(®) = U@) ltrer) (17)
where the unitary is composed of exponentiated Pauli
terms:

N
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The energy expectation is:

E() = <W(§)

i ‘@(§)> (19)

The energy gradient with respect to the i*" parameter 6;
in the ansatz is thus:
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Substituting in:



N X . i . 1 . . i+1 ~ . .
25 — (@] T A [T W) (et [T )40 [T 40 [w8)) (22)
i =it k=1 k=1 j=N

If we are only concerned with the last m'™ operator in
the ansatz, this simplifies to:

(

respect to its rotational parameter is given instead by

Figure [[V]
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This is measured with the Hadamard test in Figure [[T]
However our circuit is composed of Pauli gadgets rather
than single qubit parameterized rotations such as in the
UCC case. Following the same methodology using an-
cilla qubits and the Hadamard test, the circuit primitive
corresponding to the derivative of a Pauli gadget with

FIG. III: The Hadamard Test circuit for measuring the
real part of the expected value when the unitary V is

applied to ’\p(é')> i.c. Re <\IJ(§)‘ 1% ‘qf(ﬁ)>.

For adaptively growing the ansatz for excited states,
further gradients of the overlap with other eigenstates
need to be measured:
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Details of circuits for overlap measurement to follow.

Inspired by the original creators of the ADAPT
method[8], these gradient computations are computed by
evaluating the corresponding unitary matricies instead of
simulating circuits which would provide analytic gradi-
ents of operators. The code does not implement calcula-
tion of the gradient in circuit form.

overlap gradient

III. REFERENCE CIRCUITS AND ANSATZ
GENERATION

We created custom Ansatz constructor classes which
take a pool of excitation operators in OperatorPool and
a reference circuit as input, then creates a symbolically
parameterised state preparation ansatz circuit of choice.
A number of different references have been defined, and
in this work the closed-shell singlet HF reference |¢ur)
and open-shell lowest energy triplet reference |¢7, ) were
used (see main text). We use the Pytket circuit genera-
tor to build the ansatz circuits from sequences of Pauli
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FIG. IV: Circuit Primitive for R(%eig(aé@air@”;@”g))

operators, and also Pytket compilation passes to reduce
the quantum gate count in the circuit. Figure [V] is
an example of a constructed circuit. In this work, the
k_UCC_Ansatz and the ADAPT_VQD_Ansatz constructors
were used.

The k_UCC_Ansatz can be used to repeat a set of
excitation operators k times, as prescribed in the k-
UpCCGSD ansatz. As it is a fixed ansatz for every eigen-
state and geometry, it only needs to be called once in the
beginning of a calculation.

class k_UCC_Ansatz (Ansatz):
def generate_Circuit(self, ref: str, k:
int):

# Reference Circuit
ref_circ = reference_circuit_lib[ref

# Ansatz building, k-depth
self.symbols = {}
for rep in range(1l, k+1):
qubit_pauliop = {}
for i in range(n_params):
# Generate fresh symbol
theta = fresh_symbol (’t{}’.
format (1))
self .symbols [theta] = None
# Isolate operator
op = self.pool.
qubit_paulistrs[i]
for qpstr, coeff in op.items
O
if coeff.imag > O0:
qubit_pauliop[gpstr]

theta
else:
qubit_pauliop[gqpstr]

-1.0 * theta

Pauli_U = QubitPauliOperator (
qubit_pauliop)

if rep==
sym_circ =

gen_term_sequence_circuit (Pauli_U,

ref_circ,

partition_strat=PauliPartitionStrat
.CommutingSets,

colour_method=GraphColourMethod.
Lazy)
else:
k_circ = Circuit(n_qubits)
k_circ =
gen_term_sequence_circuit (Pauli_U,

k_circ,

partition_strat=PauliPartitionStrat.
CommutingSets,

colour_method=GraphColourMethod.Lazy)
sym_circ.append(k_circ)

# Compilation pass

self .smart_circ = sym_circ.copy()

Transform.UCCSynthesis (
PauliSynthStrat.Sets, CXConfigType.Tree).
apply (self.smart_circ)

return self.smart_circ, self.symbols

The ADAPT_VQD_Ansatz is of course adaptive and
needs to be called at each new geometry. The construc-
tor will iteratively grow an ansatz until the convergence
criterion is met, and so requires the convergence thresh-
old € as input. It also needs to compute the energy and
overlap gradient. For the latter, it calls the analytic gra-
dient functions described above from the Operator_Pool
classes.

class ADAPT_VQD_Ansatz (Ansatz):
def generate_Circuit (self,
ref: str,
params: list, #
currently sought after state
eigen_ansatze: list,
# list of circuits
beta: float,
ham_sparse,
threshold) :
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FIG. VI: (LEFT) Circuit for measuring one Pauli term. Upon measuring, each qubit collapses to either 0 or 1. The
is repeated multiple times and the results (shots) are recorded. (RIGHT) A shot table mapping each measurement
outcome to an eigenvalue (parity is whether the number of 1’s in the measurement is odd or even, which corresponds
to an eigenvalue of -1 and +1 respectively). The energy expectation of the Pauli term P; is thus the average
eigenvalue over multiple shots multiplied by h;.

if len(params)== # new eigenstate self.grad_circ = self.smart_circ

# reset for new eigenstate .copy ()
self .smart_circ = None self .symbols = dict(zip(self.
self.symbols = {} symbols, params))

self.f_op = []

# reset Reference Circuit
ref_circ = reference_circuit_1lib
[ref]

qubit_pauliop = {}

Pauli_U = QubitPauliOperator (
qubit_pauliop)

self.grad_circ =
gen_term_sequence_circuit(Pauli_U,

self .ref_circ,

partition_strat=
PauliPartitionStrat.CommutingSets,

colour_method=GraphColourMethod.
Lazy)
self.smart_circ = self.grad_circ
.copy ()

else:
eigenstate

# repopulate current

self .grad_circ.
symbol_substitution(self.symbols)

# Calculating gradients for
operators in pool

curr_norm = 0

next_deriv = 0

for op_index in range(self.pool.
n_ops):

# Energy Gradient
gi = self.pool.
compute_gradient_i (op_index,

ham_sparse,
self.grad_circ,

backend)
# Overlap Gradient
overlap_list = []
for eigen_circ in eigen_ansatze:
# 2 Re beta * <ansatz|A(k) |
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overlap = sqrt(gen_overlap(
self .grad_circ, eigen_circ, backend))

ov_g = abs(self.pool.
compute_ov_grad_i(op_index, self.grad_circ,
eigen_circ, backend))

overlap_list.append(abs (np.
real (2 * beta * ov_g * overlap)))

overlap_sum = sum(overlap_list)

# Add up total gradiemnt of
operator
gi = abs(gi) + overlap_sum

curr_norm += gi**2
if abs(gi) > next_deriv:

next_deriv = abs(gi)

next_index = op_index
curr_norm = np.sqrt(curr_norm)
max_of_com = next_deriv

# Convergence or growth
if curr_norm < threshold:

self.converged = True
else:
qubit_pauliop = {}
op_circ = Circuit(self.pool.

n_spin_orb)

# Generate fresh symbol
theta = fresh_symbol(’t’)
self .symbols [theta] = None

# Append fermion operator

self .f_op.append(self.pool.
fermi_ops[next_index])

self.op_indices.append (
next_index)

# Isolate operator
op = self.pool.qubit_paulistrs][
next_index]
for qpstr, coeff in op.items():
if coeff.imag > O:
qubit_pauliop[gqpstr] =
theta
else:
qubit_pauliop[gpstr]

-1.0 * theta

Pauli_U = QubitPauliOperator (
qubit_pauliop)

op_circ =
gen_term_sequence_circuit (Pauli_U,

op_circ,

partition_strat=PauliPartitionStrat.
CommutingSets,

colour_method=GraphColourMethod.Lazy)
self .smart_circ.append(op_circ)

Transform.UCCSynthesis (
PauliSynthStrat.Sets, CXConfigType.Tree).
apply (self.smart_circ)

return self.converged, self.

smart_circ, self.symbols, self.final_map

IV. ANSATZ OPTIMISATION AND ENERGY
CALCULATION

The total energy expectation is the sum of energy ex-

pectation of each Pauli terms in the qubit Hamiltonian:

—

() = ()| it |w(@)) (27)
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Figure [V elaborates on the statistical nature of these

measurements. In excited state VQD calculations, the
overlap is calculated using the vacuum test:

H

since  |®;) = V;]0...00) and ’{1(5)>:U|0...00>

where V; and U are unitary reference and state prepara-
tion operators, then the overlap between the two states
is the expectation of measuring |0...00) when the VjU
circuit is applied.

(o

This technique doubles the depth of the circuit (refer to
Figure for the circuit diagram).

q/(§)> = (0...00| VU |0...00)

def get_zero_state_probability(circ):
"""Measures qubits in O basis

statevector = ProjectQBackend ().
get_state(circ)

return abs(statevector [0]) **2

def overlap_gen(psi_circ, phi_circ):

"""Overlap measurement: vacuum test
nnn

circ = psi_circ.copy()
phi_circ = phi_circ.dagger ()
circ.append(phi_circ)

Transform.OptimisePhaseGadgets () .apply (
circ)

prob_X = get_zero_state_probability(circ
=circ)

return prob_X

Combining the above components, an objective func-
tion which calculates expectation values (with orthogonal
penalisation included for excited states) given an input
of free parameters thetas is needed. Any backend sup-
ported by Pytket can be used to simulate this measure-
ment; in this investigation expectation calculations were
performed on the noiseless quantum simulator ProjectQ.
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FIG. VII: (LEFT) the vacuum test, which doubles the circuit depth. (RIGHT) Measurement of the overlap gradient.

def gen_objective (operator_pool, qubit_ham,
optimised_ansatze, beta):
def energy_objective(thetas):

""" (pseudo-code) example of energy

objective function
which also accounts for the

overlap

circ =
operator_pool)

# E = <psil|Hl|psi>

energy = ProjectQBackend().
get_expectation_value (circ,qubit_ham)

gen_ansatz_circ(thetas,

overlap_sums = []
if len(optimised_ansatze) !=0:
for phi_i in optimised_ansatze:
# b * <phi_i|psi>
overlap_i = beta *
overlap_gen(circ, phi_i)
overlap_sums .append (
overlap_i)

overlap_sums = sum(overlap_sums)
energy = energy + overlap_sums

return energy
return energy_objective

This objective function was used for the nonlinear clas-
sical optimisation of the wavefunction ansatz and en-
ergy eigenvalues with respect to the free parameters.
This was achieved with the iterative optimize.minimize

function from Scipy using the Limited Broyden-Fletcher-
Goldfarb-Shannon “Bound” (L-BFGS-B) method. The
L-BFGS-B used norm of the projected energy gradient
smaller than 107> as convergence criterion, with a max-
imum number of iteration set at 30. The initial input
values for the free parameters were chosen to be random
numbers distributed between 0 and 0.1 throughout.

V. SPIN EXPECTATION CALCULATION

In this investigation the 52 expectation values of opti-
mised ansétze were computed to verify spin-restrictions
were observed. The S? operator is:

N 1 1
2
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p,q

1
75 Z(a;a Ap, — a;ﬁai’ﬂ)
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The above operator is defined as a FermionOperator

5% =8,5 +8.(5 —1) (29)
where:
Sy = Z a},a Apy (30)
p
S :Zagﬁaqa (31)
q
A 1
S, =3 Z:(a;[,aapu — a;ﬂam) (32)
p
The spin operator in second quantisation is thus:
J
q
Do WP a:rm Qg — a;ﬁ pyaly, ag, + a;r)g pg afw aqﬂ)]
(33)

(

object for a molecule with a given number of orbitals.



Once a converged ansatz is obtained, its S2 expectation
value is obtained using the same procedure as that of

(1]

2l

4

(5]

energy expectation calculation, substituting the Hamil-
tonian FermionQOperator with the S? FermionOperator.
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