Supplementary information

Tunable electronic and optical properties in bucking oneatom-thin non-lamellar B₃S monolayer

Shaohua Lu,* Yiyuan Cai, and Xiaojun Hu*

College of Materials Science and Engineering, Zhejiang University of Technology,

Hangzhou 310014, China

E-mail: lsh@zjut.edu.cn(S.Lu); huxj@zjut.edu.cn(X.Hu)

Fig. S1. The convergence test with respect to cutoff energy and K-point mesh of the h1-B₃S monolayer using an orthogonal supercell.

Fig. S2. The stress-strain diagram of the h1-B3S monolayer.

Fig. S3. Total and orbital projected DOS of the h1-B3S monolayer.

Fig. S4. Band structures of oxidized B₃S monolayer under uniaxial strains.

Fig. S5. Temperature dependent carrier mobilities along x and y directions.

Fig. S6. Atomic configurations of H_2 adsorbed on Li-decorated h1-B₃S monolayer.

vdW method	Lattice constant	S-O bond length	E _{ads-O}
	(Å)	(Å)	(eV)
Pure PBE	5.669	1.484	-0.34
PBE+D2	5.661	1.483	-0.37
PBE+TS	5.637	1.483	-0.43
PBE+TS+SCS	5.644	1.485	-0.38

Table S1. Atomic configuration and adsorption energies of fully oxidized h1-B₃S using pure PBE and PBE plus various vdW correction methods.