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1 Theoretical background
1.1 Information from RDC data
Recently we presented the TITANIA protocol, explaining the fundamentals of the approach and
applying it to simulated RDCs.[1] This chapter will summarize the framework introduced, which
is described in more depth elsewhere.[2,3]

The basic definition of RDCs D uses the averaged angle Θ between the inter spin vector and
the magnetic field.

D = Dmax

〈
3 cos2Θ− 1

2

〉
(1)

Here Dmax is the maximum dipolar coupling and the angular brackets 〈〉 denote the time and
ensemble averaging. A more common expression of RDCs used for structure validation uses
a formalism introduced by Saupe.[4] A generalized formulation of the Saupe approach uses the
normalized cosine matrix B and the alignment matrix A.[5] These matrices contain the independent
elements Tij of the corresponding second rank tensor T.
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〉
(2b)

Bij =

〈
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(3 cos βi cos βj − δij)

〉
(2c)

D = diag [Dmax]BA (2d)
B+diag

[
D-1

max
]
D = A (2e)

Here α is the angle between the external magnetic field and the axes i ∈ {x, y, z} of the molecular
frame, β is the angle between the internuclear spin vector and i, Dmax is the maximum dipolar
coupling of the respective spin pair and B+ is the pseudo-inverse of B obtained from singular
value decomposition (SVD). Alternatively, as known from literature,[6] RDCs can be expressed in
terms of dynamically averaged spherical harmonics according to
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where Aa is the axial component and R the rhombicity of the alignment tensor and Y2,m are
the second rank spherical harmonics of a spin pair. Eq. 3 can be expressed in any reference frame
when utilizing the Wigner rotation elements D

(2)
M,M′ .

D = AaDmax

√
4

5π

[
2∑

M=-2

〈
D

(2)
M,0

〉〈
Y

(2)
2,M

〉
+√

3

8
R

(
2∑

M=-2

〈
D

(2)
M,2

〉〈
Y

(2)
2,M

〉
+

2∑
M=-2

〈
D

(2)
M,-2

〉〈
Y

(2)
2,M

〉 )] (4)

2



Combining the Wigner elements and R in the matrix F leads to the matrix equation:

D̃ = FY (5a)
D̃ = diag

[
A−1

a

]
Dtdiag

[
D−1

max

]
(5b)

TITANIA uses eq. (2d) and eq. (5a) in an iterative fashion to update the alignment, structure
and dynamics information in an alternating fashion. The sequence for one iterative cycle is i)
calculate the alignment information using eq. (2e), ii) calculate the spherical harmonics using
eq. (6) and iii) convert the spherical harmonics to a new structure, which is used to restart this
cycle. The structure information is calculated by

〈Yref 〉 = F+D̃ (6)

From these refined spherical harmonics the structure parameter can be extracted by maximizing
Y2,0, which essentially is a transformation to the respective vector frame (VF). In this frame the
RDC vector is parallel to the z-axis.

max
(
Y

(2)
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2∑
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D
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M,0
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φMF
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Y
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(
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Additionally the dynamics parameters S2
RDC (local order parameter), η (asymmetry parameter)

and ϕ (direction of anisotropic motion) can be extracted:

S2
RDC =

4π

5
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η =

√∑
M=−2,2 〈Y2,M (ΘVF)〉 〈Y2,-M (ΘVF)〉∑2
M=−2 〈Y2,M (ΘVF)〉 〈Y2,-M (ΘVF)〉

(9)
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atan
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(
ΘVF)〉

i (〈Y2,2 (ΘVF)〉+ 〈Y2,-2 (ΘVF)〉)
(10)

To properly extract these parameters (at least) five alignment media with sufficient degree of
linear independence are essential.

A absorbs a part of internal structure dynamics due to the fact that it is calculated from a rigid
model. As a consequence the absolute value of S2

RDC does not reflect RDC motion without further
scaling. Peti proposed different strategies to determine a meaningful scaling factor Soverall.[7] We
decided to use the approach that is based on simple considerations of S2

RDC limits and does not
need any further investigations. The maximum value of S2

RDC is 1.0 for an RDC that does not
show any internal motion. Therefore Soverall can be obtained from the relation of the maximum
value and the largest S2

RDC,max:

Soverall =

√
1

S2
RDC,max

(11)

3



1.2 Structure generation from spherical coordinates
Peng et al.[8] and Bakken et al.[9] proposed a solution to transform an overdetermined set of
internal coordinates (bond lengths, bond angles, dihedral angles, ...) into a Cartesian base. This
transformation uses the Wilson matrix Bw with the individual elements:

Bw (qi, xj) =
∂qi
∂xj

(12)

Assuming small changes in the internal coordinates the Cartesian displacement vector ∆~X can
be formulated using the internal displacement vector ∆~q:

∆~X = B+
w∆~q (13)

The power of this algorithm is to combine the holonomic terms (like the bond lengths and angles)
with experimental data (RDC vector orientations) or structural restraints (minimum distances or
planarity). The downside of this algorithm is the iterative fashion and computationally demanding
SVD, especially for large Wilson matrices. This iterative algorithm uses eq. (13) to update the
Cartesian coordinates ~X.

In a previous publication[1] we introduced two types of damping terms added to the algorithm.
The first one is an iteration-step-independent weighting factor w, that is applied to a specific type
of internal coordinates (for example the bond lengths), to lower their contribution to the Cartesian
displacement vector ∆~X. The second term is an iteration-step-dependent global damping factor,
that is ramped up to 1.0 in a sigmoidal shape when reaching the maximum number of iteration
steps:

D =
exp

(
3.5 iter

maxiter

)2
δ + exp

(
3.5 iter

maxiter

)2 δ + exp (3.5)2

exp (3.5)2
(14)

Here δ is the user defined damping constant that determines the growth of the damping factor
D and 3.5 is an empirically determined factor, that allows a smooth manipulation of the sigmoidal
shape.
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Figure 1: Damping factors D for a set of damping constants δ as shown in the TITANIA concept
paper. For the calculations a maximum of 100 iterations was assumed. Reproduced
from Roth et al.[1]

This default algorithm is accompanied by a second protocol in TITANIA: the vector addition
algorithm, which generally is less flexible but more robust. The description and implementation
of this algorithm is described elsewhere[1] since it is not used in the context of this communication.

MMFF94 and holonomic terms
TITANIA implements the MMFF94[10–14] force field to use the equilibrium constants as holonomic
terms in the redundant internal coordinates algorithm. Additionally it is used to update atoms
not defined by RDCs (e.g. methyl protons) when no redundant internal coordinates are used for
the structure generation. The third usage is activated if the user submits a planar structure to
TITANIA, where an MMFF94 minimization is used to generate a random starting geometry.

The underlying algorithm aligns a planar input molecule in an arbitrary plane of the Cartesian
reference frame (e.g. the x,y plane). The perpendicular coordinates (the z coordinates in the
x,y plane example) are randomized and a short MMFF94 force-field optimization is performed
to apply holonomic restraints and obtain a chemically meaningful, non-planar geometry. Due to
the randomized positioning of the respective coordinates perpendicular to the initial molecular
plane, the subsequent optimization leads to a random configuration for the stereogenic center from
which the TITANIA optimization is started. By this simple method, restarting calculations from
planar geometries serves as a method to validate runs. A stable result should converge to the
same relative configuration irrespective of the (randomized) starting coordinates.
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2 Handling undefined RDCs
Ideally the matrix D contains the same number of RDCs for each alignment medium. This is,
however, hardly ever possible with real experimental data. Thus these missing data have to be
dealt with. At first it seems intuitive to define missing RDCs in D as zero, since basic linear
algebra cannot handle non-numeric elements. From the basic definition of RDCs (eq. (1)) it
follows, that 0.0 Hz would carry false information for the direction Θ = arccos

√
1
3
. Alternatively

the RDC would be 0.0 Hz due to isotropic tumbling resulting in an order parameter S2
RDC = 0.

Therefore undefined RDCs have to be handled in another way.
A simple/straightforward algorithm is made accessible by the iterative nature of the TITANIA

optimization. As described in previous publication,[1] TITANIA updates the Dmax values at the
beginning of every iteration, to properly consider structural changes. At the same time, undefined
RDCs are back-calculated using eq. (2d) (if the user defined the flag recalculaterdcs=1) and the
respective RDC values are updated in the D matrix. To distinguish back-calculated RDCs, that
are applied in the structure validation, from the back-calculated RDCs mentioned above, we refer
to the latter ones as recalculated RDCs since TITANIA updates them in every step. This update
of missing RDCs is performed in every iteration step prior to the calculation of the alignment
tensors.

From the updated D matrix the alignment tensors A and refined spherical harmonics Y are
calculated. This means that the RDCs are always biased by the structure model of the previous
step. This may help guide the optimization or – if the structure model of the previous step has
errors, e.g. is present in a wrong relative configuration – this bias may lead to instabilities in the
optimization. In the following this algorithm will be referred to as recalculation scheme.

A more complex algorithm, hereafter referred to as weighting scheme, is independent of the
previous structure. This algorithm introduces a pseudo-dimension in eq. (2d) and (5a) by splitting
the RDC matrices in vectors containing individual RDC sets (to determine A) and RDC vectors
(to determine Yref ) respectively. The graphical illustration of this idea is shown in fig. 2.

By this, the second dimension of A and Yref are reduced from M and N respectively to 1,
leading to the definition of individual vector equations:

~Am = (diag[wi]B)+ diag[wi]~Dm (15a)
~Yn = (diag[wj]F)

+ diag[wj]
~̃
Dn (15b)

In eq. (15a) all RDCs defined in medium m are used to calculate the corresponding alignment
tensor. Additionally a diagonal matrix with weights wi of the individual RDC vectors i are
introduced. These weights allow to remove missing RDCs from the system of equations, by
setting them to 0, without changing the shape of D and B for the individual media. The same is
true for eq. (15b), where all RDCs of one spin pair n are used to calculate the spherical harmonics
for the respective pair, utilizing the corresponding weighting factors wj of the individual media j.

A problem of the weighting scheme can arise if the rank of B or F drops below 5 by removing
rows. This is rather unlikely for B since the number of RDCs per set is rather large to allow the
application of TITANIA in this context. For F this reduction can be a realistic scenario, since
finding/measuring new alignment conditions is one of the challenging aspects for the successful
applications of the MFA. In such a case the Moore-Penrose inverse of F will produce equally
good refined spherical harmonics ~Y as solution of the implemented formula (black part) for any
vector ~Z of dimension 5 added to it (grey part):[15,16]

~Yn = F+ ~̃Dn+
(
I − F+F

)
~Z (16)
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=
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Figure 2: Shown are graphical representations of matrix eq. (2d). The orange filled parts of the
matrices represent defined elements. The white parts marked with a × are undefined
RDCs. In the upper panel the equation is not correct for a matrix multiplication without
further adjustments. The lower panel uses the fact, that a matrix equation can be
separated in multiple equations of lower dimension. These individual equations form an
additional pseudo-dimension, illustrated by shift and fading. The individual matrices
B and A are obtained by weighting as described in eq. (15a). Equivalently this can be
transferred to eq. (15b).

A result is, that a part of ~Y is constructed randomly from the nullspace of F if its rank
R(F) < 5 (grey part of eq. (16)). Accordingly the solution will be unique if and only if F is full
rank (R(F) = 5). This behavior has to be taken into account when undefined RDCs are clustering
on a specific vector. Thus the user should consider to remove an RDC vector from the analysis, if
it is defined in too few independent media to reduce the probability of reaching a rank below 5.

Both, the weighting and recalculation scheme, are used to interpret the experimental data to
show the applicability in the TITANIA context.

The weighting scheme enables, additionally to the discussed application, the incorporation of
experimental uncertainties in the TITANIA scheme. This can be done by weighting based on the
user defined RDC errors and the following equation:

w = wuser/∆D (17)
where wuser is the weighting factor and ∆D the experimental error, which are both defined by the

user in the RDC input. Both inputs are only considered in the weighting scheme and additionally
the error weighting (errorWeightInSVD=1) has to be activated by the user. Otherwise errors are
just used to generate the RDC matrices in the Monte-Carlo bootstrap. This additional weighting
is not used in the context of this paper to facilitate the comparison of the two schemes.

7



3 Sample preparation
All samples were prepared in 5 mm NMR tubes. The individual preparation protocols were
performed as reported in literature (for references see table 1). To check the spatial homogeneity
of the samples slice selective 2H-NMR spectra were used.[17]

Table 1: Summary of the samples used for the datasets. The choice of the enantiomers of IPC
does not influence the determination of the relative configuration. Set 01 and 02 were
measured on the same thermoresponsive sample at different temperatures.

Set Polymer Analyte w(Polymer)a) Solvent Literature
#01 co-PPLA-PBLA (305 K) (−)-IPC 12.5% TCE-d2 [18]
#02 co-PPLA-PBLA (309 K) (−)-IPC 12.5% TCE-d2 [18]
#03 PBLG (+)-IPC 7.9% TCE-d2 [19]
#04 PBDG (+)-IPC 14.0% DCM-d2 [19]
#05 PBPMLG-C2 (+)-IPC 16.5% CDCl3 unpublished
#06 PBPMLG-d1α (+)-IPC 16.5% CDCl3 [20]

a) w(Polymer) = w(Polymer)
w(Polymer)+w(Analyte)+w(Solvent)

All polymers used belong to the group of (homo)-poly amino acids (aspartates and glutamates).
The choice of using in-house polymers only is to demonstrate the applicability of TITANIA to
small organic compounds without exhausting the toolbox of NMR spectroscopists. Nevertheless
we plan to extend this approach using other alignment media to achieve superior complementarity
of the RDC sets. This is especially a goal when investigating compounds with higher flexibility.
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4 NMR-experiment conditions
All isotropic and anisotropic IPC spectra were recorded on a 700 MHz spectrometer (Bruker
AVANCE III HD, equipped with a QCI cryo probe (1H/19F-31P/13C/15N/2H) with z-gradient).
The individual solvents and additives used are summarized in table 1. The total coupling constants
(1T) and scalar coupling constants were extracted using the CLIP-HSQC[21] and perfect CLIP-
HSQC[22] experiment (INEPT delay of 145 Hz) with a total of 8k data points in the direct and
256 data points in the indirect dimension (NS = 4, DS = 32). The spectra were processed using
the qsine window function. A zero filling to 1k in the indirect dimension was applied. For each
coupling the corresponding trace (row) of the CLIP-HSQC spectrum was extracted.

To reduce the impact of measurement errors a protocol similar to the one conducted in lit-
erature[23] was used. In this protocol a trace of the 2D spectrum is duplicated to extract four
values for one coupling constant. The left and right flank of the corresponding multiplet parts
are aligned to extract two values (see fig. 3 a and b). The third value is extracted by minimizing
the difference between the respective parts of the doublet. The last value is simply obtained by
peak picking. The RDC is obtained by averaging these values, and the corresponding standard
deviation is used to estimate the experimental error. The minimum experimental error was set to
the spectral resolution after processing.

a) b) c)

Figure 3: Representation of the protocol used for RDC extraction and estimation of the experi-
mental uncertainty by using one trace from a 2D spectrum. Subplot a) aligns the left
flank of the multiplets, b) the right flank and c) minimizes the difference (green) be-
tween the two doublet sides. Additionally a peak picking, which is not shown here, was
performed to obtain a fourth measure.

For set 04 not all couplings were available from the CLIP-HSQC spectrum. Therefore an F1-
coupled HSQC[24] spectrum was recorded with a total of 1398 data points in the direct and 4k
in the indirect dimension (NS = 4, DS = 32). The spectra were processed using the qsine
window function. A zero filling to 4k in the direct and 8k in the indirect dimension was applied.
The couplings were extracted as described above, but instead of extracting traces from rows the
respective columns were used.
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The total coupling constants (nT) and scalar coupling constants (nJ ) of HH pairs were extracted
from TSE-PSYCHEDELIC[25] spectra. In table 2 the parameters are summarized. The spectra
were processed using the qsine window function. A zero filling to 32k in the direct and 512 in
the indirect dimension was applied. The couplings were extracted as described above using the
combination of multiple traces from the columns.

Table 2: Experimental settings for the TSE-PSYCHEDELIC spectra of the individual datasets
used in the optimization.

Parameters set 01 set 02 set 03 set 04 set 05 set 06

points (F2/F1) 64k / 256 64k / 256 64k / 256 16k / 128 16k / 128 64k / 128

NS / DS 4 / 16 4 / 16 4 / 16 4 / 8 4 / 32 4 / 32
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5 List of RDCs
All RDCs obtained are summarized in table 3.

Table 3: All RDCs extracted from the experiments described above (section 4) are summarized
with the corresponding uncertainties. Missing RDCs are marked by a "-".

coupling nDXH
a) / Hz

pair set 01 set 02 set 03 set 04 set 05 set 06
C1-H1 -7.89( 68) 14.53( 68) 15.01( 73) 25.60( 81) -5.78(124) -0.55( 34)
C2-H2 4.59( 68) -7.96(173) 0.09( 68) -12.21( 48) -6.61(139) -8.76( 37)
C3-H3 12.12( 68) -21.07( 68) 16.37( 68) 14.38( 34) -29.50( 71) -16.51( 34)
C4-H4a 2.41( 68) -4.08( 68) -3.63( 68) -2.40( 83) 6.48( 25) 2.65( 34)
C4-H4s 2.95( 68) -5.34( 68) 17.62( 68) 15.24( 76) -28.64(101) -17.84( 34)
C5-H5 -2.34( 68) 4.10( 68) -7.29( 68) -15.32( 34) -12.80( 31) -5.80( 34)
C7-H7a -1.29( 68) 5.65( 68) -17.76( 68) -24.49( 34) 35.63( 95) 16.58( 36)
C7-H7s 1.04( 68) -3.56( 68) -1.40( 68) 4.08(121) 14.03(103) 9.29( 34)
C6-C8 -0.52( 68) 0.74( 68) -1.52( 68) -0.60( 32) 4.06( 27) 3.82( 34)
C6-C9 1.05( 68) -1.92( 68) 1.35( 68) 1.26( 84) -2.46( 14) -1.45( 34)
C2-C10 0.49( 68) -1.14( 68) 0.17( 68) 0.40( 43) -1.85( 14) -0.93( 34)
H1-H2 -2.56( 4) 5.05( 7) -6.56( 7) -5.11( 14) - 9.77( 11)
H1-H3 0.00( 4) 0.52( 4) - 2.08( 50) 0.00( 50) -
H1-H4a -0.46( 4) 0.93( 4) - 0.00( 50) - -
H1-H4s 0.00( 4) 0.67( 4) - 1.64( 4) 0.00( 50) -
H1-H5 -0.52( 4) 0.85( 4) 0.56( 4) - - -0.87( 15)
H1-H7a -0.26( 4) 1.31( 4) 0.26( 4) -0.26( 50) - 0.28( 10)
H1-H7s 1.10( 47) -2.94( 5) 0.45( 4) 0.56( 4) -7.42( 9) -3.14( 10)
H2-H3 0.92( 18) -1.88( 7) 4.66( 4) 4.37( 10) -6.83( 4) -3.54( 40)
H2-H4a -0.83( 4) 1.60( 4) 1.11( 4) 0.77( 50) - -1.40( 10)
H2-H4s -0.07( 51) 0.18( 9) 0.72( 6) 1.84( 50) -2.05( 6) -1.27( 15)
H2-H7a 1.64( 6) -4.07( 9) -1.78( 4) -3.20(200) - -2.90( 10)
H2-H7s 0.00( 4) 0.00( 10) -1.59( 4) -2.15( 5) 2.19( 50) 1.43( 10)
H3-H4a 1.43( 46) -3.23( 9) 0.92( 4) 0.45( 50) -5.68( 5) -2.62( 49)
H3-H4s -0.68( 4) 1.16( 4) -2.41( 4) -4.66( 50) -7.43( 5) -3.94(144)
H3-H5 0.00( 4) -0.59( 10) - 0.00( 50) 0.00( 50) -
H3-H7a 0.48( 96) -1.94( 4) 1.48( 4) 1.47( 50) -2.50( 16) -1.48( 10)
H3-H7s 0.00( 4) -0.68( 10) - 0.00( 50) 0.00( 50) -
H4a-H4s 8.03( 20) -14.97( 11) 5.49( 7) -2.06( 7) -12.80( 12) -9.93( 10)
H4a-H5 -2.08( 4) 4.28( 5) -7.63( 5) -8.14( 7) - 9.38( 10)
H4a-H7a -1.05( 7) 1.59( 9) 6.80( 4) 10.23( 11) - -2.65( 10)
H4a-H7s -0.19( 39) 1.19( 4) 0.91( 4) 2.87( 8) 1.93( 11) 1.44( 10)
H4s-H5 0.81( 27) -1.79( 6) 0.48( 6) 2.26(100) 4.22(100) 2.74( 10)
H4s-H7a -0.26( 52) -0.86( 4) 2.40( 4) - - -1.78( 10)
H4s-H7s 0.07( 4) -0.25( 19) 1.33( 6) 2.07( 8) -2.56( 50) -0.89( 53)
H5-H7a 0.00( 4) 0.99( 4) -0.70( 4) - - -1.29( 10)
H5-H7s -0.39( 23) 0.94( 6) 6.40( 5) 6.82( 4) -9.05(100) -4.89( 10)
H7a-H7s -5.29(170) 12.34( 5) -19.52( 7) -19.15(200) 50.85(103) 26.89( 10)

a) n = 1 for X = C and n >=2 for X = H. Note that 1DCH couplings of methyl groups were converted to the
respective 1DCC RDCs.[26]
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6 Orientations of IPC
The orientations used for the setups, reported in the main text, are summarized in table 4.
All parameters were calculated using the in-house RDC module (RDC@hotFCHT) of the hotFCHT
software.[27] The structure model used to determine the orientations of IPC was taken from liter-
ature.[19]

Table 4: Orientations of the individual RDC sets used for the setups in the main text.
Alignment
parameters set 01 set 02 set 03 set 04 set 05 set 06

Aa -5.275e-04 1.033e-03 1.139e-03 1.564e-03 -2.384e-03 -1.270e-03
R 2.652e-01 2.494e-01 5.002e-01 4.737e-01 8.722e-02 1.839e-01
RMSD 3.288e-01 4.156e-01 5.418e-01 6.342e-01 8.255e-01 5.642e-01
Q-Factor 1.131e-01 7.601e-02 7.258e-02 7.085e-02 5.406e-02 6.910e-02
Cond. numbera 1.468 1.468 1.630 1.605 1.753 1.630
α/◦ 34.54 23.86 99.41 113.39 82.00 86.23
β/◦ 38.90 40.66 73.13 64.28 84.27 88.39
γ/◦ 116.71 120.01 7.33 1.02 23.53 24.19

a) Condition number of the normalized cosine matrix B.
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7 RDC setups
The full RDC matrix and the corresponding experimental uncertainties are summarized in table 3.
To investigate the impact of undefined elements we adjusted the set sizes (removed rows from the
matrix). The first setup (A-6) is not reduced in size and contains 23 undefined RDCs, which show
clustering on proton H1 (11 undefined RDCs). The RDCs of H1 show two RDC-vectors which are
undefined in three sets (4DH1H3, 4DH1H5 and 5DH1H4s) and even one RDC pair which is undefined
in three media (5DH1H4a).

We used two of the measured media as a template to reduce the number of undefined RDCs
in the matrix. For setup B-6 these two media were 03 and 06. Since both media had the same
undefined RDCs they were the obvious choice to remove the maximum number of rows that have
two or more undefined RDCs (see tables on the following pages). This leads to a matrix with
12 undefined RDCs, with H7a showing seven undefined RDCs (twice undefined in two media:
4DH7aH4s, 3DH7aH5).

The second template used for setup C-6 was set 05, since it had the highest number of undefined
RDCs of all media. As a result only eight RDCs are undefined, but all of them are undefined
in two media. Three of these four RDC-vectors involve H3. Additionally five out of the seven
possible H7a RDCs were removed from the set.

In the last and most obvious setup D-6 we removed all RDC-vectors that were undefined in
any of the media, leaving 13 long range nDHH RDCs for the analysis. This drastically reduced
the number of RDCs of H1 (only 3DH1H7s) and H7a (only 2DH7aH7s and 5DH7aH3). All results are
summarized in the following sections. The tables on the following pages show the setups generated,
where orange cells (with an x) represent available RDCs used for the analysis. White cells (with
a -) are undefined RDCs kept in the analysis. Grey rows (with a -) were removed from the data
sets.
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Table 5: The RDCs used in the setup A-6 are shown below. An x shows that the RDC is available
and a - that the RDC is undefined (white cell). This setup has 23 undefined RDCs.

RDC set 01 set 02 set 03 set 04 set 05 set 06 index
C1-H1 x x x x x x 1
C2-H2 x x x x x x 2
C3-H3 x x x x x x 3
C4-H4a x x x x x x 4
C4-H4s x x x x x x 5
C5-H5 x x x x x x 6
C7-H7a x x x x x x 7
C7-H7s x x x x x x 8
C6-C8 x x x x x x 9
C6-C9 x x x x x x 10
C2-C10 x x x x x x 11
H1-H2 x x x x - x 12
H1-H3 x x - x x - 13
H1-H4a x x - x - - 14
H1-H4s x x - x x - 15
H1-H5 x x x - - x 16
H1-H7a x x x x - x 17
H1-H7s x x x x x x 18
H2-H3 x x x x x x 19
H2-H4a x x x x - x 20
H2-H4s x x x x x x 21
H2-H7a x x x x - x 22
H2-H7s x x x x x x 23
H3-H4a x x x x x x 24
H3-H4s x x x x x x 25
H3-H5 x x - x x - 26
H3-H7a x x x x x x 27
H3-H7s x x - x x - 28
H4a-H4s x x x x x x 29
H4a-H5 x x x x - x 30
H4a-H7a x x x x - x 31
H4a-H7s x x x x x x 32
H4s-H5 x x x x x x 33
H4s-H7a x x x - - x 34
H4s-H7s x x x x x x 35
H5-H7a x x x - - x 36
H5-H7s x x x x x x 37
H7a-H7s x x x x x x 38
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Table 6: The RDCs used in the setup B-6 are shown below. An x shows that the RDC is available
and a - that the RDC is undefined (white cell) or removed (grey row) based on the
undefined RDCs of set 03/06. This setup has 12 undefined RDCs.

RDC set 01 set 02 set 03 set 04 set 05 set 06 index
C1-H1 x x x x x x 1
C2-H2 x x x x x x 2
C3-H3 x x x x x x 3
C4-H4a x x x x x x 4
C4-H4s x x x x x x 5
C5-H5 x x x x x x 6
C7-H7a x x x x x x 7
C7-H7s x x x x x x 8
C6-C8 x x x x x x 9
C6-C9 x x x x x x 10
C2-C10 x x x x x x 11
H1-H2 x x x x - x 12
H1-H3 - - - - - - -
H1-H4a - - - - - - -
H1-H4s - - - - - - -
H1-H5 x x x - - x 13
H1-H7a x x x x - x 14
H1-H7s x x x x x x 15
H2-H3 x x x x x x 16
H2-H4a x x x x - x 17
H2-H4s x x x x x x 18
H2-H7a x x x x - x 19
H2-H7s x x x x x x 20
H3-H4a x x x x x x 21
H3-H4s x x x x x x 22
H3-H5 - - - - - - -
H3-H7a x x x x x x 23
H3-H7s - - - - - - -
H4a-H4s x x x x x x 24
H4a-H5 x x x x - x 25
H4a-H7a x x x x - x 26
H4a-H7s x x x x x x 27
H4s-H5 x x x x x x 28
H4s-H7a x x x - - x 29
H4s-H7s x x x x x x 30
H5-H7a x x x - - x 31
H5-H7s x x x x x x 32
H7a-H7s x x x x x x 33
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Table 7: The RDCs used in the setup C-6 are shown below. An x shows that the RDC is available
and a - that the RDC is undefined (white cell) or removed (grey row) based on the
undefined RDCs of set 05. This setup has 8 undefined RDCs.

RDC set 01 set 02 set 03 set 04 set 05 set 06 index
C1-H1 x x x x x x 1
C2-H2 x x x x x x 2
C3-H3 x x x x x x 3
C4-H4a x x x x x x 4
C4-H4s x x x x x x 5
C5-H5 x x x x x x 6
C7-H7a x x x x x x 7
C7-H7s x x x x x x 8
C6-C8 x x x x x x 9
C6-C9 x x x x x x 10
C2-C10 x x x x x x 11
H1-H2 - - - - - - -
H1-H3 x x - x x - 12
H1-H4a - - - - - - -
H1-H4s x x - x x - 13
H1-H5 - - - - - - -
H1-H7a - - - - - - -
H1-H7s x x x x x x 14
H2-H3 x x x x x x 15
H2-H4a - - - - - - -
H2-H4s x x x x x x 16
H2-H7a - - - - - - -
H2-H7s x x x x x x 17
H3-H4a x x x x x x 18
H3-H4s x x x x x x 19
H3-H5 x x - x x - 20
H3-H7a x x x x x x 21
H3-H7s x x - x x - 22
H4a-H4s x x x x x x 23
H4a-H5 - - - - - - -
H4a-H7a - - - - - - -
H4a-H7s x x x x x x 24
H4s-H5 x x x x x x 25
H4s-H7a - - - - - - -
H4s-H7s x x x x x x 26
H5-H7a - - - - - - -
H5-H7s x x x x x x 27
H7a-H7s x x x x x x 28
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Table 8: The RDCs used in the setup D-6 are shown below. An x shows that the RDC is available
and a - that the RDC is removed (grey row). This setup contains no undefined RDCs.

RDC set 01 set 02 set 03 set 04 set 05 set 06 index
C1-H1 x x x x x x 1
C2-H2 x x x x x x 2
C3-H3 x x x x x x 3
C4-H4a x x x x x x 4
C4-H4s x x x x x x 5
C5-H5 x x x x x x 6
C7-H7a x x x x x x 7
C7-H7s x x x x x x 8
C6-C8 x x x x x x 9
C6-C9 x x x x x x 10
C2-C10 x x x x x x 11
H1-H2 - - - - - - -
H1-H3 - - - - - - -
H1-H4a - - - - - - -
H1-H4s - - - - - - -
H1-H5 - - - - - - -
H1-H7a - - - - - - -
H1-H7s x x x x x x 12
H2-H3 x x x x x x 13
H2-H4a - - - - - - -
H2-H4s x x x x x x 14
H2-H7a - - - - - - -
H2-H7s x x x x x x 15
H3-H4a x x x x x x 16
H3-H4s x x x x x x 17
H3-H5 - - - - - - -
H3-H7a x x x x x x 18
H3-H7s - - - - - - -
H4a-H4s x x x x x x 19
H4a-H5 - - - - - - -
H4a-H7a - - - - - - -
H4a-H7s x x x x x x 20
H4s-H5 x x x x x x 21
H4s-H7a - - - - - - -
H4s-H7s x x x x x x 22
H5-H7a - - - - - - -
H5-H7s x x x x x x 23
H7a-H7s x x x x x x 24
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8 SECONDA
SECONDA is a method to analyse RDC data matrices reported by Hus and Brüschweiler.[28]
It utilizes the weighted (w) covariance matrix Cov for a principle component analysis (PCA).
The results are the principle variances (eigenvalues λ of Cov) and eigenmodes (eigenvectors |q〉
of Cov) which are primarily used to gain information on the homo- and heterogeneity of the
RDC data. In this interpretation the principle variances contain information on the amplitude of
differences in the alignment conditions. The corresponding eigenmodes carry information on the
localization of these amplitudes.

Our main goal is to find and interpret the rank of the RDC matrix to gain information if the
experimental data is of sufficient quality (also in terms of independence of alignments induced) to
allow for a structure optimization in TITANIA.

Covij =
1

M − 1

M∑
m/∈(I∪J)

wm (Dm
i − 〈Di〉)

(
Dm

j − 〈Dj〉
)

(18a)

w =
1

1
N−1

∑N
n (Dm

n − 〈Dm〉)2
(18b)

Brüschweiler proposed to use the collectivity κq (see eq. (19)),[29] which reduces the eigen-
modes to a single value to judge whether the amplitude appears in a global or localized fashion.
The range of κq is 100

N
% to 100%, where N is the number of RDC vectors. This allows for the rep-

resentation of the eigenvalue and eigenvector pairs in two scalars λ and κq. Typically these values
are used to generate an κq = f (λ) plot. When discussing the eigenvalues λi they are ordered in
descending order.

κq =
1

N
exp

[
−

N∑
i

||q〉i|
2 log ||q〉i|

2

]
· 100% (19)

As reported in literature[30] SECONDA is sensitive to undefined RDCs. Hus handled undefined
RDCs in an RDC matrix of 58 ubiquitin residues in 10 media in three approaches. The easiest
was to remove every residue from the analysis, that is undefined in any of the 10 media, leaving
32 residues. Alternatively, the media with several undefined RDCs were removed, followed by
removing the residues that were undefined in the remaining 8 media. By this 41 residues were
analyzed for 8 media. The last approach used a rigid structure model, which was used to back-
calculate the missing RDCs.

Here we propose an additional method to handle missing RDCs. The weighting factors w and
the covariances Cov are adapted to neglect RDC vectors for the media in which they are undefined.

Covij =
1

M − 1− |I ∪ J|

M∑
m/∈(I∪J)

wm (Dm
i − 〈Di〉)

(
Dm

j − 〈Dj〉
)

(20a)

w =
1

1
N−K−1

∑N
n6=k (D

m
N − 〈Dm〉)2

(20b)

where N is the number of RDCs (including undefined ones), M is the number of alignment
media, K is the number of undefined RDCs (with the index k) in the medium m. The mean RDC
〈Dm〉 treats the undefined RDCs by removing them from the sum and the denominator (N-K) in
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the same manner. I is the (mathematical) set of media, in which the RDC i is undefined, I∪ J is
the union of the respective (mathematical) sets for i and/or j, |X| is the cardinality (= number
of members) in X and 〈Di〉 is the mean RDC of the vector i in all media (neglecting undefined
RDCs). Using eq. (18a) and (18b) allows to construct a weighted covariance matrix, that neglects
undefined RDCs in a proper manner. This matrix will be referred to as reduced covariance matrix.
It is noteworthy that in the sum of the covariance matrix elements the whole medium m has to
be dropped if one RDC i or j is undefined.

This approach is compared to the standard SECONDA analysis, either keeping RDCs as 0.0 in
the data matrix (referred to as sparse) or back-calculating them using the correct structure model
(referred to as filled).
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For all plots the filled (with back-calculated values) data sets are considered to represent the
results closest to the correct solution.

A-6 shows a complex pattern in the SECONDA plots and therefore needs the highest attention.
While the different approaches exhibit similar magnitudes λ for the first three eigenvalues, the
respective collectivities κq vary strongly. This indicates that these eigenvalues are independent
of experimental errors, here in the form of undefined RDCs. This was reported in literature[28]
for linearly independent alignment conditions. The eigenvalues λ4 and λ5 obtained by the default
implementation (eq. (18a), used in combination with the sparse data matrix) and the adapted
implementation (eq. (20a), resulting in a reduced covariance matrix) both are shifted to higher
values (up to 5-fold increase), compared to the eigenvalues of the filled RDC matrix. This directly
shows that undefined RDCs induce heterogeneities in the datasets. The reduced covariance matrix
is not capable of fully removing these heterogeneities, but the respective difference to the results
of the matrix filled with back-calculated RDCs is smaller than for the scheme setting undefined
RDCs to zero.

Here the most conspicuous point is that the covariance matrix obtained from eq. (20a) is the
only matrix (of all SECONDA results shown here) resulting in more than five non-zero eigenvalues
(threshold implemented to be interpreted as zero is 1e-9). We did not observe a direct correlation
of the eigenvalues λn with n > 5 and undefined RDCs in the eigenmodes (for more information
see .trj output files in supplementary material).

When reducing the number of undefined RDCs to 12 (B-6) these additional non-zero eigenvalues
vanish and only five eigenvalues can be observed. Just like for A-6 the eigenvalues λ4 and λ5 of
the reduced covariance matrix (eq. (20a)) are closer to the ones obtained from the filled RDC
matrix. This small trend becomes clearer when the undefined RDCs are reduced even further
(C-6, 8 undefined RDCs). Like before the eigenvalues λ1 to λ3 remain similar, but the principle
variances λ4 and λ5 are now more similar for the back-calculated and reduced covariance matrix.
This demonstrates that the reduction of the covariance matrix is capable of reducing the impact of
undefined RDCs without fully removing media or RDC vectors from the PCA. The limits of this
new approach introduced here were not investigated in depth. Thus the question whether data
matrices with higher amounts of alignment media are tolerant to more undefined RDCs remains
open.

The last SECONDA plot (D-6, no undefined RDCs) just confirms that the implementation of
the reduced covariance matrix is self-consistent. All RDCs are defined, so the (mathematical)
sets I and J in eq. (20a) and (20b) are the empty set ∅ and the reduced approach results in the
literature implementation.

From the data presented here we can see that for all setups A-6 to D-6 the first three eigenvalues
λ1 to λ3 remain nearly unchanged for the different approaches to handle the undefined RDCs.
This clearly shows, that these eigenvalues are insensitive to the algorithm used and therefore to
heterogeneity. As a result we conclude that at minimum three strongly different alignment media
are available for the TITANIA optimization.[28] This becomes even clearer when investigating the
cumulative sums (see output files in supplementary material) of the eigenvalues for λ3 which are
>98% of the filled RDC matrix. Since we are investigating a rigid structure the data are sufficient
for the protocol used. The eigenvalues λ4 and λ5 show a higher dependency on the treatment of
undefined RDCs putting TITANIA to the test.
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9 Trajectories
TITANIA uses a Monte-Carlo bootstrap to estimate the uncertainties of the structure and orien-
tation parameters based on the user defined experimental error of the RDCs. Additionally the
results of the bootstrap are used to check for convergence in the iterative TITANIA cycle. For this
reason the rmsds of the reduced Saupe tensors S, the spherical coordinates p and their respective
standard deviations σ are monitored. In addition the mean RDC vector lengths Rs (obtained by
averaging all orientation vectors obtained from the Monte-Carlo Bootstrap for one RDC spin pair)
are used. The maximum number of iterations is set to 1000 for all runs. The stop criteria are
as follows (defined for the isopinocampheol system based on our previous work): 10-5 for changes
in the alignment tensor components, 10-6 for changes in the standard deviations of the alignment
tensor components, 10-2 for changes of the spherical coordinates, 10-2 for changes of the standard
deviations of the spherical coordinates and 10-6 for changes in the mean RDC vector length. For
run D-6 the criteria were tightened by a factor of two for one run to demonstrate the early stop
in a local minimum, as explained in the text. It is expected that these criteria are reached more
quickly for some setups than for others.

The trajectory of the Monte-Carlo parameters, Soverall and the chiral volumes Vc of the inde-
pendent centers (C2, C3, C4, C6, C7) in IPC are plotted to visualize the progression. The chiral
volumes used do not follow the Cahn-Ingold-Prelog convention and thereby cannot be translated
into absolute configurations of the respective stereocenters.

All available setups (A-6, B-6, C-6, D-6) using the recalculation and weighting scheme to
handle missing RDCs are plotted using different starting structures (epi-C3 and random configu-
ration).

The trajectories are rather complex for B-6 and C-6 and the direct results cannot be read
from the trajectories. If using statistics of the chiral volumes, however, interpretation is simplified
drastically (see section 10).

For the following trajectories the panels are all arranged in the same manner:

a) C3-epimer starting structure using the weighting scheme.
b) C3-epimer starting structure using the recalculation scheme.
c) starting structure with random configuration using the weighting scheme.
d) starting structure with random configuration using the recalculation scheme.

At the right side of the chiral volume trajectory the arrows indicate the correct stereo chemistry
of the corresponding centers. As the runs may converge to different enantiomeric forms, this helps
to discriminate the cases of correct vs incorrect relative configurations.
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Figure 5: Trajectories for setup A-6. The upper panels show the runs using C3-epimer as start-
ing structure using the weighting (a) and recalculation scheme (b). The lower panels
started from a diastereomer of IPC with random configurations (c: weighting scheme,
d: recalculation scheme). Note that the pairs of reference chiral volumes C3 (golden) /
C4 (green) and C6 (red) / C7 (purple) coincide.
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Figure 6: Trajectories for setup B-6. The upper panels show the runs using C3-epimer as start-
ing structure using the weighting (a) and recalculation scheme (b). The lower panels
started from a diastereomer of IPC with random configurations (c: weighting scheme,
d: recalculation scheme). Note that the pairs of reference chiral volumes C3 (golden) /
C4 (green) and C6 (red) / C7 (purple) coincide.
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Figure 7: Trajectories for setup C-6. The upper panels show the runs using C3-epimer as start-
ing structure using the weighting (a) and recalculation scheme (b). The lower panels
started from a diastereomer of IPC with random configurations (c: weighting scheme,
d: recalculation scheme). Note that the pairs of reference chiral volumes C3 (golden) /
C4 (green) and C6 (red) / C7 (purple) coincide.
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Figure 8: Trajectories for setup D-6. The upper panels show the runs using C3-epimer as start-
ing structure using the weighting (a) and recalculation scheme (b). The lower panels
started from a diastereomer of IPC with random configurations (c: weighting scheme,
d: recalculation scheme). Note that the pairs of reference chiral volumes C3 (golden) /
C4 (green) and C6 (red) / C7 (purple) coincide.
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A-6 (fig. 5):
Fig. 5 shows the trajectories of all four A-6 runs performed. All of these converge before

reaching the defined maximum iterations (1000). Especially the weighting scheme runs (panels
a and c) show highly stable chiral volumes prior to the convergence. These runs result in the
correct relative configuration. A close look at C7 reveals a slightly longer bond length of C7-H7a
and C6-C8 (see .xyz files in supplementary material). This is a direct consequence of the large
amount of missing RDCs, especially for H7a.

The only run not converging into the correct stereo chemistry is shown in panel b (recalculation
scheme with epi-C3 starting structure). Here C6 shows an inversion a few iterations before the
convergence. When taking a close look at the .xyz outputs it can be seem that actually stereo
information is lost at that point and a strongly distorted structure (with C6 in close to square
planar coordination) is obtained.

For most of the data in fig. 5 the trajectories are of high enough quality to determine the correct
configurations. Nevertheless, as detailed for C7 above, a critical assessment regarding the RDC
data and the xyz files is always advisable. If the trajectories are not of sufficient quality (as for
panel b) an assessment of the chiral volume distribution allows for more detailed insights (see
section 10).

B-6 (fig. 6):
Fig. 6 shows the trajectories of setup B-6 which still misses 12 RDCs (A-6: 23) while reducing

the set size by 5 RDCs compared to A-6 (see table 5 and 6). These 12 missing RDCs are mainly
in set 05 (9 missing RDCs).

The first difference to A-6 is that the optimizations do not converge within 1000 steps making it
harder to analyse them on the first sight. A close look shows that panel a (weighting scheme with
epi-C3 starting structure) and d (recalculation scheme with random starting structure) reveal the
correct relative configuration in the end.

The other two (b and c) have incorrect and somehow random-like final configurations. This
changes when comparing the whole trajectories, instead of the final configuration, to the correct
relative configuration (arrows on the right, see also chiral volume distributions in section 10).
Here mainly C6 (see panel b) is unstable, which is a behaviour already known from the previous
publication and is the result of too few RDCs for C6.[1]

A more in-depth discussion based on the distributions of the chiral volumes is presented in the
next section.

C-6 (fig. 7):
C-6 does not leave much space for a discussion of the structural information from the chiral

volume plots. Panel a (weighting scheme with epi-C3 starting structure) clearly converges into
the correct relative configuration. All other trajectories show no correlation on the first sight.
Therefore the discussion of the structure information obtained by this setup necessitates using the
chiral volume distributions in the next section.

D-6 (fig. 8):
The setup D-6 does not contain any missing RDCs and therefore shows the same trajectory for

the weighting and recalculation scheme. This can even be seen in the Monte-Carlo values where
only very small changes due to the principle of the algorithm can be found. All other values, which
do not depend on random numbers, are equal (see Soverall and chiral volume panels). However,
fast convergence like in panel a and b does not necessarily mean the correct relative configuration
is found. This is seen for C3 (orange) which is obtained in the wrong configuration. The user can
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recognize this when taking a critical look at the structure. The C3-H3 bond is extraordinarily
short (0.82 Å) while the C2-H2 (1.24 Å) and C4-H4a (1.29 Å) bonds are very long (as discussed
in the main text). This is a typical sign that no stable configuration is found here. We used
two simple methods to demonstrate how to overcome this problem. The first way is to reduce all
convergence criteria by 50% to run the optimization for more iteration steps. The second option is
to adapt the weighting factor for bond lengths in the redundant internal coordinates. The results
of these options are shown in section 11.

When using random starting structures (panel c and d) the correct relative configuration is
found. Here the trajectories do not have to be the same since the starting geometries were
generated randomly. This is an example how to verify a TITANIA solution. Using different
starting geometries will lead to the same solution for a solid RDC base. If the structures (or
single centers) do not converge into the same configuration, the alignment conditions are not
independent enough, the RDCs have too large heterogeneities (e.g. experimental errors) or they
are just simply too few to allow the use of this approach.
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10 Chiral volume distributions
As demonstrated in section 9 the trajectories did not converge in all cases and complex plots of
the chiral volumes are obtained. Hence we show and discuss the distribution of Vc in the following.
RDCs are not capable of determining the absolute configuration of organic compounds without
additional information.[31] That is why both enantiomers of IPC were reached in the optimization.

TITANIA does not implement the full Cahn–Ingold–Prelog priority rules. Therefore the sign
of the chiral volumes might differ from those determined by software specialized on this task.
However, here we only compare Vc within TITANIA. The reference values calculated by TITANIA
for IPC are: C2: 0.778 Å3, C3: -0.828 Å3, C4: -0.807 Å3, C6: 0.632 Å3, C7: 0.648 Å3 which were
already used in the previous section. An equally good solution is obtained if all chiral volumes
show the inverse sign corresponding to the inverse absolute but same relative configuration (=
enantiomers).

In addition to the distribution of the chiral volumes, the plots contain the final chiral volume
with the rmsd (of all possible vector permutations used in eq. (22)) as uncertainty, the mean
chiral volume 〈Vc〉 with the standard deviation as uncertainty and the median of the distribution.
We assumed a normal distribution to calculate the standard deviation. While this might not
be a proper statistical model, it needs to be mentioned that we do not try to extract statistical
information on the probabilities of the distribution, but rather want to get an estimate of the data
dispersion. 〈Vc〉 is thus taken as assessment on the distribution of the chiral volumes in the course
of the optimization. To take the trajectory into account an iteration-weighted mean 〈Vc,w〉 and
the respective standard deviation σw are calculated:

〈Vc,w〉 =
∑It

it it · Vc,it∑It
it it

(21a)

σw =

√∑It
it it (Vc − 〈Vc,w〉)2∑It

it it
(21b)

Vc = ~r1 · (~r2 ×~r3) (22)
where It is the number of iterations performed. Using the unweighted and weighted mean allows
for a better interpretation of the data. In the perfect case of (close to) normal distributed data
the median, weighted and unweighted mean will be very similar and unequal zero for non-planar
centers. The corresponding standard deviations will be small.

If the median and the two mean values are close to zero with large standard deviations a
determination of the configuration is not possible due to rapid inversions of the chiral volumes.
In such a scenario the final chiral volume is not to be relied on. The weighted mean allows a
differentiation of random inversions from equally distributed chiral volumes which are caused by
an iterative improvement of the structure.

Even though the first case (all values match and are unequal zero) is the perfect scenario, it
needs a very high quality of data (small heterogeneities, low linear dependence of the sets and
large set sizes). The most common case is that the median, weighted and unweighted mean values
do not match. Here different patterns in the distribution and the values discussed are possible.
If the median and weighted mean are close to the final chiral volume the optimization retains
the respective configuration in the late iteration steps. This is the most common scenario for
well defined centers and an example is discussed below. If the median and unweighted mean are
close to each other, but the final value and weighted mean are different as compared to the latter,
the trajectory becomes unstable in the late iteration steps. In this case a close inspection of the
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trajectory of the 3D-structure will give better insights on how to properly adapt TITANIA to solve
this problem. A longer optimization or adapting the weight in the redundant internal coordinates
might help driving converge towards the correct solution. The last possible pattern would be
an apparently random order of the median, weighted and unweighted chiral volume, where the
distribution itself might help in the interpretation. For the IPC examples discussed below, the last
two cases were especially found for centres with only few RDCs. In each case the xyz file should
be investigated in more detail, checking for centers which are highly unstable. Such centers can
affect the whole optimization.

An example which shows how the correct solution is populated more in the later steps of the
optimization is fig. 9. Here the mean value (red line) is around -0.5 Å3. This is clearly lower
than the expected value of -0.82 Å3 (red arrow). Since the optimization tends towards the correct
configuration in the later steps the weighted mean (blue) is closer to the correct solution and
very similar to the median (green). Also the standard deviation is reduced, since the incorrect
configuration (0.82 Å3) has a very low weighting. The final value (grey line) is even closer to the
reference value. This might be due to the fact, that this example was calculated using a damping
of the redundant internal coordinates in TITANIA.

-1.0 -0.5 0.0 0.5 1.0
0

100

200

Chiral Volume / Å3

C
ou

nt
s

1
N

∑N
i Vc,iVc,N

eq. (21)

Figure 9: Exemplary distribution of chiral volumes with the following statistical parameters: the
median (green), the final chiral volume Vc (grey) with the rmsd of all possible permuta-
tions for the ~ri (see eq. (22)), the mean chiral volume 〈Vc〉 (red) and the weighted mean
〈Vc,w〉 (blue) with their respective standard deviations. On the bottom the reference
chiral volume is indicated by the red arrow.
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A-6 (fig. 10):
Like in the trajectories discussed above we see that A-6 shows good results in terms of relative

configurations. Panel a and d have rather sharp distributions of the chiral volumes and the values
discussed cluster near the correct chiral volume. The only wrong configuration is in panel b
(recalculation scheme with epi-C3 starting structure) for the center C6. When investigating this
plot it becomes clear that both mean values and the median suggests the correct configuration.
This was also seen in the trajectory, where the wrong configuration was obtained within the very
last steps. As stated above determining the correct configuration of center C6 with higher certainty
is hard due to the low amount of experimentally (easily) accessible RDCs.

The center C3 in panel c (weighting scheme with random starting structure) is an example
which is hard to interpret. It shows that in the early iterations the wrong configuration for C3
was present and later the correct configuration was found. This interpretation is based on the fact,
that the median and unweighted mean have a negative magnitude, while the weighted mean is
positive. This optimization is a perfect example for the power of using different starting structures
when a center is not defined properly in a single run, since all other panels verify the correct chiral
volume of C3. All other centers are properly defined by each single run as can be seen from the
distribution of the parameters discussed.

B-6 (fig. 11):
B-6 contains trajectories that are very hard to interpret and do not converge within 1000 steps.

As read from the trajectories the panels a (weighting scheme with epi-C3 starting structure) and
d (recalculation scheme with random starting structure) have the correct relative configuration
for the final structure. This configuration is confirmed by the statistical interpretation. As before,
panels b (recalculation scheme with epi-C3 starting structure) and c (weighting scheme with ran-
dom starting structure) are harder to interpret. In b the correct configuration of C2 is represented
by all statistical parameters shown. C3, C4 and C7 show good agreement between the statistic
parameters and the correct configuration, but the final chiral volume has the wrong sign. C6 does
not show an unambiguous configuration. A close look at the the .xyz file reveals the origin of this
strange behaviour. Between iteration 860 and 920 an inversion of the dependent centers C1 and
C5 occurs, which leads to a slow inversion of the whole structure (resulting in the enantiomer).
The center C2, which does not invert until iteration 1000, shows the inverse solution of the C2-C10
vector. With the correct solution for this vector the enantiomer would have been present. The
same behaviour can be observed in the .xyz file for panel c, where a full inversion of the structure
happens late in the trajectory which is partially reverted.

C-6 (fig. 12):
The trajectories for C-6, apart from panel a of fig. 7, are too complex to allow any reasonable

discussion. This is also reflected in the distributions of the chiral volumes. Panel a shows the only
run that results in a clear relative configuration of IPC.

Neglecting C6 the majority of the centers in panel b to d show either the correct or an undefined
configuration when checking the statistic parameters. In the concept paper a similar behaviour
was observed. There the runs with medium set size (23 RDCs) with experimental error 1-D23
and 1-E23 showed the most unstable trajectories of the whole comparison.[1] In this example
(C-6) the reason is most likely the significantly reduced number of RDCs (28 RDCs) while four
long-range RDCs still are undefined in two media. These two points might influence each other
negatively. The difference to D-6 are only these four RDC vectors, but the optimization of D-6
shows much better results.
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D-6 (fig. 13):
As discussed in the previous chapter (trajectories) panel a and b are exactly the same and

only show the wrong configuration on C3, which can be identified in the .xyz file. Adapting the
settings of TITANIA (see section 11) results in the correct configuration of this center. All other
centers in a and b, like the whole panel c, show the correct results with high accuracy. Panel
c shows two centers that have to be discussed: C2 and C4. C2 shows low mean values that are
slightly shifted to the correct configuration. This is an example of a late inversion, explaining why
the unweighted mean is close to 0.0 Å3. The weighted mean is slightly shifted towards the median
and the final value. This indicates the correct solution. As stated before, the correct configuration
can be confirmed when using other starting geometries (panels a to c).

Harder is C4, which cannot be interpreted without the .xyz data. The trajectory of the Carte-
sian coordinates of this center show a trend towards the inversion early on in the trajectory. This
can be concluded from the distorted bond lengths at C4 and the neighbouring C3 and C4 (this
was discussed for C3 D-6 in section 9). Additionally the bond angles of the H4 protons are very
conspicuous. Only when the correct (final) configuration is reached, the bond angles and lengths
reach reasonable values.

The data shown demonstrate that TITANIA is capable of optimizing structures of small, rigid
organic compounds based solely on experimental RDCs. This confirms the findings utilizing
simulated RDCs in the concept paper. We also were able to show that missing RDCs can be
handled in the five alignment media approach using different schemes. For the cases that did not
provide a result with sufficiently high certainty (e.g. C2 in fig. 13 panel d) a change in the input
structure was a reasonable approach to verify the results.
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11 Adapted runs of setup D-6
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Figure 14: Trajectories for D-6 with reduced weighting of the bond lengths (left) and tighter stop
criteria (right).

The trajectory using reduced weighting of the bond lengths shows a very fast convergence into
the correct relative configuration. In a practical structure determination this trajectory is too
short for a doubtless assignment of the correct configuration. Here it is used as an example of how
the weighting of one type of internal coordinates can change the behaviour of the optimization.
The second approach, lowering the stop criteria to enforce a longer trajectory, results in the correct
configurations while achieving a superior sampling. This allows for a reliable determination of the
structure.
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Figure 15: Chiral volume distributions for D-6 with reduced weighting of the bond lengths (left)
and tighter stop criteria (right).

The chiral volume distributions of D-6 with adapted parameters show the results expected from
the trajectories. All centers show well defined configurations which match the correct values. As
stated for the trajectories, the left plot (reduced bond weighting) is not resilient for an unambigu-
ous structure determination (as it is too short) and is reported to demonstrate the behavior of
the optimization.
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12 Content of Supplementary Material
The supplementary material is avialable as two zip-archives on https://doi.org/10.5281/zenodo.
5636052, which contain all information used to perform the TITANIA runs with the respective
outputs (TITANIAdata.zip) and the NMR-spectra (NMRspectra.zip). A README.md file was
added to the TITANIAdata.zip archive using the markdown syntax. This is also added here:

# Incomplete Data Se t s in the Model Free Ana ly s i s o f Exper imenta l
Res idua l Dipo la r Coupl ings in Small Organic Compounds
## F e l i x A. Roth , Volker Schmidts , Jan Ret t i g

and C h r i s t i n a M. Th i e l e

## Top Leve l D i r e c t o r i e s
− weight_C3Start (−−> weight ing scheme s t a r t i n g from C3−epimer )
− weight_RandConf (−−> weight ing scheme s t a r t i n g from random

c o n f i g u r a t i o n s )
− reca l c_C3Star t (−−> r e c a l c u l a t i o n scheme s t a r t i n g from

C3−epimer )
− recalc_RandConf (−−> r e c a l c u l a t i o n scheme s t a r t i n g from

random c o n f i g u r a t i o n s )

A l l d i r e c t o r i e s l i s t e d above conta in s u b d i r e c t o r i e s f o r the
i n d i v i d u a l runs A−6 to D−6.
reca l c_C3Star t a d d i t i o n a l l y c on t a i n s the adapted
runs f o r setup D−6.

Some i n d i v i d u a l runs use d i f f e r e n t keywords , RDC data and
s t r u c t u r e s . These are l o c a t e d in the remain ing d i r e c t o r i e s :
− keywords
− rdc s
− s t r u c t u r e s
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