Supporting Information On the Structure of $Au_{11}(SR)_9$ and $Au_{13}(SR)_{11}$ clusters

C. Emilio Cárdenas,^a Alfredo Tlahuice-Flores^{a*}

^a Universidad Autonoma de Nuevo León, CICFIM,-Facultad de Ciencias Físico-Matemáticas, San Nicolás de los Garza, Nuevo León, 66455, México; <u>tlahuicef@gmail.com</u>

TABLE S1. Relative energies (eV) of of Au₁₁(SCH₃)₉ cluster the isomers and calculated HOMO-LUMO gap values.

Isomer	Configuration	Relative energy, eV	HOMO- LUMO gap, eV
Iso 1	Au ₃ +Au ₂ (SCH ₃) ₃ +Au ₆ (SCH ₃) ₆	0.000	1.994
Iso2	Au ₄ +Au ₂ (SCH ₃) ₃ +Au ₅ (SCH ₃) ₆	0.190	1.312
Iso3	Au ₄ +Au ₃ (SCH ₃) ₄ +Au ₄ (SCH ₃) ₅	0.338	1.964
Iso4	Au ₄ +Au(SCH ₃) ₂ +Au ₆ (SCH ₃) ₇	0.482	2.1431

FIG. S1. Lowest energy isomers of Au₁₁(SCH₃)₉ clusters. (a) Triangular core (Au₃), (b) Dimer motif (Au₂(SCH₃)₃), (c) Cyclomer (Au₆(SCH₃)₆), (d) Iso 1 of Au₁₁(SCH₃)₉ cluster, (e) Tetrahedral core (Au₄), (f) Dimer motif (Au₂(SCH₃)₃), (g) Pentamer motif (Au₅(SCH₃)₆), (h) Iso 2 of Au₁₁(SCH₃)₉ cluster. Color code: Gold atoms are shown in yellow, Sulphur atoms are red balls, Carbon atoms are displayed in gray, and Hydrogen atoms in white.

FIG. S2. Lowest energy isomers of $Au_{11}(SH)_9$ clusters. (a) Triangular core (Au₃), (b) Dimer motif (Au₂(SH)₃), (c) Cyclomer (Au₆(SH)₆), (d) Iso 1 of Au₁₁(SH)₉ cluster, (e) Tetrahedral core (Au₄), (f) Dimer motif (Au₂(SH)₃), (g) Pentamer motif (Au₅(SH)₆), (h) Iso 2 of Au₁₁(SH)₉ cluster. Color code: Gold atoms are shown in yellow, Sulphur atoms are red balls, Carbon atoms are displayed in gray, and Hydrogen atoms in white.

FIG. S3. Lowest energy isomers of Au₁₁(SPh)⁹ clusters. (a) Tetrahedral core (Au₄), (b) Dimer motif (Au₂(SPh)₃), (c) Pentamer motif Au₅(SPh)₆, (d) Iso 1 of Au₁₁(SPh)₉ cluster, (e) Triangular core (Au₃), (f) Dimer motif (Au₂(SPh)₃), (g) cyclomer motif (Au₆(SPh)₆), (h) Iso 2 of Au₁₁(SPh)₉ cluster. Color code: Gold atoms are shown in yellow, Sulphur atoms are red balls, Carbon atoms are displayed in gray, and Hydrogen atoms in white.

FIG. S4. Lowest energy isomers of Au₁₁(SR)⁹ clusters with R= adamantly (SC₁₀H₁₅). (a) Triangular core (Au₃), (b) Dimer motif (Au₂(SC₁₀H₁₅)₃), (c) cyclomer motif Au₆(SC₁₀H₁₅)₆, (d) Iso 1 of Au₁₁(SC₁₀H₁₅)⁹ cluster, (e) Tetrahedral core (Au₄), (f) Dimer motif (Au₂(SC₁₀H₁₅)₃), (g) pentamer motif motif (Au₅(SC₁₀H₁₅)₆), (h) Iso 2 of Au₁₁(SC₁₀H₁₅)⁹ cluster. Color code: Gold atoms are shown in yellow, Sulphur atoms are red balls, Carbon atoms are displayed in gray, and Hydrogen atoms in white.

Isomer	Configuración	Relative energy, (Relative energy w/correction) eV	HOMO-LUMO gap, eV
-	Au ₄ +Au ₆ (SCH ₃) ₆ +Au ₂ (SCH ₃) ₃ +Au(SCH ₃) ₂	- (0.000)	1.9996
Iso1	$Au_4+Au_2(SCH_3)_3+Au_7(SCH_3)_8$	0.000 (0.52)	2.4075
Iso2	Au ₄ +Au ₄ (SCH ₃) ₅ +Au ₅ (SCH ₃) ₆	0.013	1.1432
Iso3	$Au_3+Au_4(SCH_3)_5+Au_6(SCH_3)_6$	0.170	1.9728
Iso4	Au ₄ +Au ₃ (SCH ₃) ₄ +Au ₆ (SCH ₃) ₇	0.187	0.8575
Iso5	Au ₆ +3[Au ₂ (SCH ₃) ₃]+Au(SCH ₃) ₂	0.990	0.1868

TABLE S2. Relative energies (eV) of Au₁₃(SCH₃)₁₁ cluster isomers and calculated HOMO-

LUMO gap values.

FIG. S5. Lowest energy isomers of $Au_{13}(SR)_{11}$ clusters with R= Methyl. (a) Tetrahedral core (Au₄), (b) monomer motif (Au(SCH₃)₂), (c) dimer motif Au₂(SCH₃)₃, (d) cyclomer (Au₆(SCH₃)₆), cluster, (e) Iso 1 of Au₁₃(SCH₃)₁₁ cluster, (f) Tetrahedral core (Au₄), (g) dimer motif (Au₂(SCH₃)₃), (h) heptamer motif (Au₇(SCH₃)₈), (i) Iso 2 of Au₁₃(SCH₃)₁₁ cluster . Color code: Gold atoms are shown in yellow, Sulphur atoms are red balls, Carbon atoms are displayed in gray, and Hydrogen atoms in white.

FIG. S6. Lowest energy isomers of $Au_{13}(SR)_{11}$ clusters with R= H. (a) Tetrahedral core (Au₄), (b) monomer motif (Au(SH)₂), (c) dimer motif Au₂(SH)₃, (d) cyclomer (Au₆(SH)₆), cluster, (e) Iso 1 of Au₁₃(SH)₁₁ cluster, (f) Tetrahedral core (Au₄), (g) dimer motif (Au₂(SH)₃), (h) heptamer motif (Au₇(SH)₈), (i) Iso 2 of Au₁₃(SH)₁₁ cluster . Color code: Gold atoms are shown in yellow, Sulphur atoms are red balls, Carbon atoms are displayed in gray, and Hydrogen atoms in white.

FIG. S7. Lowest energy isomers of $Au_{13}(SR)_{11}$ clusters with R= Ph, adamantyl. (a) Tetrahedral core (Au4), (b) dimer motif (Au₂(SPh)₃), (c) heptamer motif Au₇(SPh)₈, (d) Au₁₃(SC₆H₅)₁₁ cluster, (e) Tetrahedral core (Au4) cluster, (f) dimer motif (Au₂(SC₁₀H₁₅)₃), (g) heptamer motif (Au₇(SC₁₀H₁₅)₈), (h) Au₁₃(SC₁₀H₁₅)₁₁ cluster. Color code: Gold atoms are shown in yellow, Sulphur atoms are red balls, Carbon atoms are displayed in gray, and Hydrogen atoms in white.

Lowest energy Au₁₃(SCH₃)₁₁ cluster

- Au -3.07362 -0.32455 -1.55762
- Au 0.00013 -1.56694 1.27244
- Au -0.14492 -0.79978 -1.44721
- Au -1.30040 0.72907 0.61153
- Au 0.51994 2.70071 1.93982
- Au 2.14958 -3.31521 0.79888
- Au -1.25100 -3.43467 -0.70811
- Au -1.39476 2.96525 -1.08288
- Au 1.50803 0.56914 0.19071
- Au 0.72877 0.80788 -4.02945
- Au 2.22585 -0.38652 2.91760
- Au 2.58033 2.42370 -2.18754
- Au -2.27462 -0.66853 3.00533
- S -3.40233 -2.58404 -1.05162
- S 0.16374 -1.41793 -3.72476
- S 0.19773 4.16162 0.13926
- S 3.62234 1.53408 -0.32286
- S 3.54314 -2.22097 2.31442
- S 0.90848 1.33775 3.79842
- S 1.65196 2.93916 -4.26365
- S 0.81501 -4.53658 -0.67087
- S -3.05375 1.88876 -2.32953
- S -0.83152 -2.44412 3.44187
- S -3.32349 1.16360 2.00529
- C 3.96886 2.85522 0.89350
- C 0.31570 4.16459 -4.00984
- C -1.48811 -1.69527 -4.46545

С	-4.57146	2.54380	-1.53288
С	-0.76262	5.55831	0.84331
С	2.03670	2.30621	4.87152
С	4.91096	-1.54423	1.30357
С	0.48670	-6.09468	0.23865
С	-4.21920	-2.57827	0.58371
С	-1.71910	-4.00136	3.06551
С	-2.99584	2.63940	3.03469
Η	3.10297	3.51180	1.02554
Η	4.21082	2.36733	1.84593
Η	4.83156	3.43080	0.53837
Η	-0.32569	3.89205	-3.16169
Η	-0.27994	4.20570	-4.92904
Η	0.78294	5.13844	-3.82477
Η	-1.37274	-1.72497	-5.55510
Η	-1.85304	-2.66329	-4.10165
Η	-2.19171	-0.90726	-4.17916
Η	-5.43186	2.04088	-1.98740
Η	-4.62309	3.62085	-1.72818
Η	-4.55057	2.35139	-0.45438
Η	-1.04777	6.22207	0.01950
Η	-1.65585	5.20283	1.36377
Η	-0.11203	6.09317	1.54440
Η	2.92826	2.62876	4.32695
Н	2.32532	1.66648	5.71295
Η	1.48754	3.18021	5.23922
Н	4.53629	-0.88412	0.51507
Н	5.45595	-2.38995	0.87013

- Н 5.57141 -0.98216 1.97401
- Н 0.04926 -5.89506 1.22020
- Н -0.20512 -6.69376 -0.36394
- Н 1.43842 -6.62524 0.35481
- Н -4.39356 -3.62038 0.87473
- Н -5.17655 -2.05668 0.48080
- Н -3.60137 -2.07060 1.33637
- Н -2.53742 -4.13551 3.78122
- Н -0.99562 -4.81894 3.17715
- Н -2.10721 -3.99771 2.04105
- Н -1.93887 2.69707 3.31735
- Н -3.62266 2.59324 3.93169
- Н -3.26614 3.52124 2.44020

Lowest energy Au₁₁(SCH₃)9 cluster

Au	0.437350	1.556385	3.186755
Au	-1.209997	-0.643088	1.868135
Au	-0.553976	3.434415	1.570606
Au	-0.163033	3.885199	4.293973
Au	-1.385049	7.058258	3.898777
Au	-1.793725	6.396676	0.824962
Au	2.092391	-0.634745	2.474136
Au	3.248718	1.778996	4.267928
Au	-3.301565	2.260655	2.372778
Au	0.570300	1.907010	6.519415
Au	-2.684387	2.523097	5.473938
S	-0.307431	5.872425	5.568026
S	-2.464994	8.182235	2.164515
S	-0.964131	4.622955	-0.415048

S	0.339222	-2.136478	2.771969
S	3.920995	0.795377	2.259148
S	-2.840613	0.617698	0.784071
S	2.741413	2.735848	6.324234
S	-3.876754	3.861365	3.975935
S	-1.578425	1.132838	6.974262
С	-4.254994	7.902249	2.478810
С	-2.421479	3.862371	-1.229756
С	3.476066	2.002881	0.948227
С	-4.330608	-0.458731	0.790309
С	0.572761	-3.391661	1.448323
С	3.746002	1.819172	7.557516
С	1.409048	6.525666	5.589952
С	-1.678236	-0.534128	6.206998
С	-5.650503	3.557371	4.355608
Η	-4.801837	8.156074	1.563480
Η	-4.560653	8.573250	3.289452
Η	-4.451053	6.863533	2.760111
Η	-2.741124	4.532619	-2.036274
Η	-3.239065	3.702651	-0.521038
Η	-2.106102	2.899419	-1.646167
Η	3.531305	1.487690	-0.017154
Η	4.215275	2.810958	0.981395
Η	2.469265	2.404902	1.108024
Η	-4.127019	-1.323225	0.148135
Η	-5.161723	0.121742	0.373092
Η	-4.581006	-0.793430	1.800249
Н	-0.330354	-4.011432	1.413879

Η	1.435695	-4.010111	1.720314
Η	0.739322	-2.922817	0.474856
Η	4.796761	2.094537	7.409149
Η	3.623427	0.737533	7.452419
Η	3.417068	2.136996	8.553592
Η	1.384584	7.516607	6.057652
Η	1.822571	6.596120	4.580558
Η	2.015480	5.840809	6.193929
Η	-2.714844	-0.879032	6.297327
Η	-1.014863	-1.202976	6.766097
Η	-1.385389	-0.508132	5.152975
Η	-6.246703	3.947097	3.522318
Η	-5.893480	4.107639	5.271904
Η	-5.856515	2.493376	4.496605