## Parameter Space Exploration Reveals Interesting Mn-doped SrTiO $_3$ Structures

Gil M. Repa and Lisa A. Fredin Department of Chemistry Lehigh University, PA 18015, USA

July 22, 2021

The xyz coordinates of each optimized structure are https://github.com/fredingroup/Mn\_V\_STO.

## Table of Contents

| Figure S1:  | Perovskite Structure with A- and B-cells highlighted             | 3  |
|-------------|------------------------------------------------------------------|----|
| Table S1:   | K-Grids for Full Band Structures                                 | 3  |
| Table S2:   | Average wall times per atom                                      | 3  |
| Figure S2:  | Location of defect in single vacancy supercells                  | 4  |
| Figure S3:  | Location of defect in double vacancies supercells                | 5  |
| Figure S4:  | Location of defect in Mn doped supercells                        | 6  |
| Figure S5:  | Single point energy wall times with HSE06                        | 7  |
| Table S3:   | Final Energy/Atom from BLYP SCF Optimizations (eV)               | 8  |
| Table S4:   | BLYP Formation Energies (eV)                                     | 9  |
| Table S5:   | HSE06 Energy Per Atom (eV)                                       | 10 |
| Table S6:   | Coordination Number                                              | 10 |
| Table S7:   | Atomic identities at high symmetry points in supercells          | 11 |
| Figure S6:  | 444vsro rotations                                                | 12 |
| Figure S7:  | Single bond length distribution                                  | 13 |
| Figure S8:  | Double bond length distribution                                  | 14 |
| Figure S9:  | Single Mn-doped bond length distribution                         | 15 |
| Figure S10: | Double Mn-doped bond length distribution                         | 16 |
| Figure S11: | $3 \ge 2 \ge 2 V_{Ti} - V_{Oz}$                                  | 17 |
| Figure S12: | $Mn^{2+}$ and $Mn^{3+}$ geometries                               | 17 |
| Figure S13: | Pure Supercells Bandstructures                                   | 18 |
| Figure S14: | $V_{\rm O}$ band<br>structures                                   | 18 |
| Figure S15: | HSE06 band structures for asymmetric $V_O$ defects               | 19 |
| Figure S16: | BLYP band structures for A-site defects                          | 20 |
| Figure S17: | BLYP band structures for $Mn^{2+/3+/4+}$ defects.                | 21 |
| Figure S18: | HSE06 predicted energy levels for $V_{Ti}$ defects.              | 22 |
| Figure S19: | BLYP bands structures for $Mn^{2+/3+/4+}$ defects.               | 23 |
| Figure S20: | HSE06 predicted energy levels for asymmetric Mn-doped supercells | 24 |



Fig. S1: Structure of  $\rm SrTiO_3$  with A- and B-cells highlighted.

| Supercell  | K-Grid for SCF  |
|------------|-----------------|
| <b>222</b> | 4 x 4 x 4       |
| 322        | $6 \ge 4 \ge 4$ |
| 333        | 3 x 3 x 3       |
| <b>334</b> | 4 x 4 x 6       |
| 444        | 4 x 4 x 4       |

Table S1: Size of K-Point grids used for BLYP band structure calculations

Table S 2: Average optimization time per atom (CPU-Hour/Atom) for BLYP Optimizations and HSE06 Single Point calculations.

| Supercell | Optimization, BLYP | Single Point, HSE06 |
|-----------|--------------------|---------------------|
| 222       | 0.201              | 0.165               |
| 322       | 0.190              | 0.247               |
| 333       | 0.502              | 1.188               |
| 334       | 0.762              | 2.644               |
| 444       | 3.823              | 9.356               |



Fig. S2: Location of single vacancy after optimization with the BLYP functional in QuantumEspresso.



Fig. S3: Location of double vacancies after optimization with the BLYP functional in QuantumEspresso.



Fig. S4: Location of Mn and vacancies after optimization with the BLYP functional in QuantumEspresso.



Fig. S5: Calculation time for single point energy calculation with the HSE06 functional in VASP.

|                       | 222          | 322          | 333          | 334          | 444          |
|-----------------------|--------------|--------------|--------------|--------------|--------------|
| $V_{Sr}$              | -744.2657762 | -745.2385766 | -746.3066162 | -746.5311086 | -746.8073023 |
| $V_{Ti}$              | -724.3104427 | -732.0574714 | -740.5011067 | -742.1759561 | -744.3691788 |
| $V_{O(x)}$            | -755.6305339 | -752.7624734 | -749.6372671 | -749.0168518 | -748.2032369 |
| V <sub>Oz</sub>       |              | -752.7665551 |              | -749.0168518 |              |
| $V_{Sr} - V_{O(x)}$   | -752.9134956 | -750.9311597 | -748.8086861 | -748.3950758 | -747.8562941 |
| $V_{Sr} - V_{Oz}$     |              | -750.9229963 |              | -748.3937153 |              |
| $V_{Ti} - V_{O(x)}$   | -732.4955717 | -737.5350859 | -742.9705231 | -744.0303994 | -745.4113678 |
| $V_{Ti} - V_{Oz}$     |              | -737.5486915 |              | -744.0317599 |              |
| $Mn_{Sr}$             | -795.7684145 | -779.6212884 | -761.5748206 | -757.9870238 | -753.2468328 |
| $Mn_{Sr} - V_{O(x)}$  | -805.6011816 | -785.803673  | -764.1721296 | -759.906774  | -754.3175935 |
| $Mn_{Sr} - V_{Oz}$    |              | -785.7887069 |              | -759.9081346 |              |
| $Mn_{Ti}$             | -776.4348569 | -766.721819  | -755.8563869 | -753.6890148 | -750.8359205 |
| $Mn_{Ti} - V_{O(x)}$  | -785.7805435 | -772.6905958 | -758.410158  | -755.5829143 | -751.8903545 |
| $Mn_{Ti} - V_{Oz}$    |              | -772.6905958 |              | -755.5815538 |              |
|                       |              |              |              |              |              |
| $Mn_{Sr}^{+2}$        |              |              | -761.4101928 |              |              |
| $Mn_{Sr}^{+3}$        |              |              | -761.4999898 |              |              |
| $Mn_{Sr}^{+2} - V_O$  |              |              | -764.010223  |              |              |
| $Mn_{Sr}^{+3} - V_O$  |              |              | -764.1000199 |              |              |
| $Mn_{Ti}^{+2}$        |              |              | -755.6822352 |              |              |
| $Mn_{Ti}^{+3}$        |              |              | -755.769311  |              |              |
| $Mn_{Ti}^{+2} - V_O$  |              |              | -758.2305641 |              |              |
| $Mn_{T_i}^{+3} - V_O$ |              |              | -758.3176399 |              |              |
| Pure                  | -747.0168286 | -747.0685298 | -747.1433606 | -747.1501634 | -747.1610479 |

Table S3: Final Energy/Atom from BLYP SCF Optimizations (eV)

|                                | 222      | 322      | 333      | 334      | 444      |
|--------------------------------|----------|----------|----------|----------|----------|
| $V_{Sr}$                       | 28.793   | 31.629   | 37.822   | 37.388   | 40.072   |
| $V_{Ti}$                       | 102.809  | 110.573  | 121.703  | 125.306  | 129.34   |
| $V_{O(x)}$                     | -25.686  | -25.445  | -22.919  | -22.709  | -20.827  |
| V <sub>Oz</sub>                |          | -25.632  |          | -22.574  |          |
| $V_{Sr} - V_{O(x)}$            | 7.608    | 10.128   | 15.433   | 16.471   | 17.975   |
| $V_{Sr} - V_{Oz}$              |          | 10.563   |          | 16.657   |          |
| $V_{Ti} - V_{O(x)}$            | 79.277   | 88.385   | 97.961   | 101.796  | 106.912  |
| $V_{Ti} - V_{Oz}$              |          | 87.613   |          | 101.647  |          |
| $Mn_{Sr}$                      | -79.046  | -87.973  | -87.748  | -92.759  | -92.42   |
| $Mn_{Sr} - V_{O(x)}$           | -103.549 | -109.626 | -110.115 | -114.157 | -116.073 |
| $Mn_{Sr} - V_{Oz}$             |          | -108.78  |          | -114.214 |          |
| $Mn_{Ti}$                      | -9.958   | -12.636  | -9.632   | -10.556  | -9.459   |
| $Mn_{Ti} - V_{O(x)}$           | -34.793  | -34.61   | -31.86   | -31.454  | -30.591  |
| $Mn_{Ti} - V_{Oz}$             |          | -34.645  |          | -31.394  |          |
|                                |          |          |          |          |          |
| $Mn_{Sr}^{+2}$                 |          |          | -14.747  |          |          |
| $Mn_{Sr}^{+3}$                 |          |          | -46.521  |          |          |
| $Mn_{Sr}^{+2} - V_O$           |          |          | -37.692  |          |          |
| $Mn_{Sr}^{+3} - V_O$           |          |          | -69.244  |          |          |
| $Mn_{Ti}^{+2}$                 |          |          | 64.556   |          |          |
| $Mn_{T_i}^{\dot{+}\dot{3}}$    |          |          | 33.114   |          |          |
| $Mn_{T_i}^{\frac{1}{2}} - V_O$ |          |          | 42.946   |          |          |
| $Mn_{Ti}^{+3} - V_O$           |          |          | 11.637   |          |          |

Table S4: BLYP Formation Energies (eV)

|                       | 222          | 322          | 333          | 334          | 444          |
|-----------------------|--------------|--------------|--------------|--------------|--------------|
| $V_{Sr}$              | -198.0148511 | -202.112484  | -206.5867829 | -207.4845842 | -208.642966  |
| $V_{Ti}$              | -208.4336437 | -209.012022  | -209.6199424 | -209.7471407 | -209.9164343 |
| $V_{O(x)}$            | -214.5764628 | -213.0668738 | -211.4267926 | -211.1000003 | -212.6232848 |
| $V_{Oz}$              |              | -213.071719  |              | -211.0989248 |              |
| $V_{Sr} - V_{O(x)}$   | -202.331468  | -205.0162594 | -207.8961848 | -208.4603362 | -209.1977631 |
| $V_{Sr} - V_{Oz}$     |              | -205.0084437 |              | -208.4593437 |              |
| $V_{Ti} - V_{O(x)}$   | -213.0702195 | -212.036507  | -210.9618343 | -210.748737  | -210.474778  |
| $V_{Ti} - V_{Oz}$     |              | -212.050635  |              | -210.7500737 |              |
| $Mn_{Sr}$             | -200.8934164 | -203.9852221 | -207.3817383 | -208.0744695 | -208.971549  |
| $Mn_{Sr} - V_{O(x)}$  | -205.2288125 | -206.8794141 | -208.6840937 | -209.0587394 | -209.5232516 |
| $Mn_{Sr} - V_{Oz}$    |              | -206.8746108 |              | -209.0583626 |              |
| $Mn_{Ti}$             | -211.1545334 | -210.8026532 | -210.4345089 | -210.3551869 | -212.1997876 |
| $Mn_{Ti} - V_{O(x)}$  | -215.6819792 | -213.7956101 | -211.745963  | -211.3379666 | -212.7175917 |
| $Mn_{Ti} - V_{Oz}$    |              | -213.8005991 |              | -211.3456746 |              |
|                       |              |              |              |              |              |
| $Mn_{Sr}^{+2}$        |              |              | -207.3027308 |              |              |
| $Mn_{Sr}^{+3}$        |              |              | -207.3488361 |              |              |
| $Mn_{Sr}^{+2} - V_O$  |              |              | -208.6065772 |              |              |
| $Mn_{Sr}^{+3} - V_O$  |              |              | -208.6483583 |              |              |
| $Mn_{Ti}^{+2}$        |              |              | -210.3467951 |              |              |
| $Mn_{Ti}^{+3}$        |              |              | -210.4026405 |              |              |
| $Mn_{T_i}^{+2} - V_O$ |              |              | -211.6685291 |              |              |
| $Mn_{T_i}^{+3} - V_O$ |              |              | -211.7272356 |              |              |
| Pure                  | -209.985323  | -210.023776  | -210.0979741 | -210.1057988 | -210.1189973 |

Table S5: HSE06 Energy Per Atom (eV)

|                      | 222   | 322   | 333   | 334   | 444   |
|----------------------|-------|-------|-------|-------|-------|
| $Mn_{Sr}$            | 4.501 | 4.661 | 4.735 | 4.631 | 4.685 |
| $Mn_{Sr} - V_{O(x)}$ | 4.455 | 4.475 | 4.496 | 4.463 | 4.778 |
| $Mn_{Sr} - V_{Oz}$   |       | 4.477 |       | 4.457 |       |
| $Mn_{Ti}$            | 4.912 | 4.805 | 5.023 | 4.934 | 4.988 |
| $Mn_{Ti} - V_{O(x)}$ | 4.749 | 4.778 | 4.796 | 4.816 | 5.116 |
| $Mn_{Ti} - V_{Oz}$   |       | 4.907 |       | 5.109 |       |
| $Mn_{Sr}^{+2}$       |       |       | 4.757 |       |       |
| $Mn_{Sr}^{+3}$       |       |       | 4.442 |       |       |
| $Mn_{Sr}^{+2} - V_O$ |       |       | 4.155 |       |       |
| $Mn_{Sr}^{+3} - V_O$ |       |       | 4.17  |       |       |
| $Mn_{Ti}^{+2}$       |       |       | 5.249 |       |       |
| $Mn_{Ti}^{+3}$       |       |       | 4.93  |       |       |
| $Mn_{Ti}^{+2} - V_O$ |       |       | 5.046 |       |       |
| $Mn_{Ti}^{+3} - V_O$ |       |       | 4.966 |       |       |

Table S6: Coordination Number

| upercen    | High Symmetry Point | Atom               |
|------------|---------------------|--------------------|
| <b>222</b> | Γ                   | Ti                 |
|            | Μ                   | Ti                 |
|            | Х                   | Ti                 |
|            | R                   | Ti                 |
| 322        | Г                   | 0                  |
|            | М                   | Ti                 |
|            | Х                   | Ti                 |
|            | А                   | Ti                 |
|            | Z                   | 0                  |
|            | R                   | Ti                 |
| 333        | Г                   | Sr                 |
| 000        | M                   | 0                  |
|            | X                   | A-Cell Face Center |
|            | R                   | Ti                 |
| 334        | Г                   | A-Cell Face Center |
| 001        | M                   |                    |
|            | X                   | A-Cell Face Center |
|            | A                   | Ti                 |
|            | Z                   | 0                  |
|            | R                   | 0                  |
|            |                     |                    |
| 444        | Γ                   | Ti                 |
|            | Μ                   | Ti                 |
|            | Х                   | Ti                 |
|            | R                   | Ti                 |

| Table S7: Atom | nic identities at high symme | try points in supercells |
|----------------|------------------------------|--------------------------|
| Supercell      | High Symmetry Point          | Atom                     |
| 000            | T.                           | m.                       |



Fig. S6: Antiferrodistortive-like rotations in 4 x 4 x 4  $\rm V_{Sr}\text{-}V_O$ 



Fig. S7: Histogram of Sr-O bond lengths (green) and Ti-O bond lengths (blue) in singly defected cells. The bulk value is represented by the vertical dashed line.



Fig. S8: Histogram of Sr-O bond lengths (green) and Ti-O bond lengths (blue) in doubly defected cells. The bulk value is represented by the vertical dashed line.



Fig. S9: Histogram of Sr-O bond lengths (green) and Ti-O bond lengths (blue) in singly Mn-doped defected cells. The bulk value is represented by the vertical dashed line.



Fig. S10: Histogram of Sr-O bond lengths (green) and Ti-O bond lengths (blue) in singly defected cells. The bulk value is represented by the vertical dashed line.



Fig. S11: 3 x 2 x 2  $\rm V_{Ti}\text{-}V_{Oz}$  supercell capturing octahedral tilt.



Fig. S12: Geometries predicted for  $Mn^{2+/3+}$  dopants



Fig. S13: BLYP predicted bands for selected undefected supercells



Fig. S14: BLYP predicted band structures for  $\mathrm{V}_\mathrm{O}$  supercells



Fig. S15: HSE06 band structures for asymmetric  $\mathrm{V}_{\mathrm{O}}$  defects.







Fig. S17: BLYP band structures for  $Mn^{2+/3+/4+}$  defects.



Fig. S18: HSE06 predicted energy levels for  $\mathrm{V}_{\mathrm{Ti}}$  defects.







Fig. S20: HSE06 predicted energy levels for asymmetric Mn-doped supercells